PATTERSON CROSSING RETAIL CENTER

DRAFT ENVIRONMENTAL IMPACT STATEMENT

VOLUME II

NYS ROUTE 311 at INTERSTATE 84 EXIT 18

Towns of Patterson and Kent, Putnam County, New York

Project Sponsor: Patterson Crossing Realty, LLC 1699 Route 6, Suite 1 Carmel, NY 10512 Contact: Paul A. Camarda Tel. (845) 228-1400

Lead Agency: Town of Patterson Planning Board P.O. Box 470 1142 Route 311 Patterson, NY 12563 Contact: Richard Williams Sr., Town Planner Tel. (845) 878-6500

Prepared By: TIM MILLER ASSOCIATES, Inc. 10 North Street Cold Spring, New York 10516 Contact: Tim Miller, AICP Tel. (845) 265-4400

Project Engineer: Insite Engineering, Surveying & Landscape Architecture, P.C. 3 Garrett Place Carmel, NY 10512 Contact: Jefferey Contelmo, P.E. Tel. (845) 225-9690

Lead Agency Acceptance Date: _____

Public Hearing Date: _____

Deadline for Receipt of Public Comments:

July 27, 2006

Project Consultants for Patterson Crossing Retail Center DEIS

Environmental Planner TIM MILLER ASSOCIATES, Inc. 10 North Street Cold Spring, New York 10516 Contact: Tim Miller, AICP Tel. (845) 265-4400 Fax. (845) 265-4418

Project Engineer Insite Engineering, Surveying & Landscape Architecture, P.C. 3 Garrett Place Carmel, NY 10512 Contact: Jefferey Contelmo, P.E. Tel. (845) 225-9690 Fax. (845) 225-9717

> Hydrogeology Consultant SSEC, Inc. 4 Deer Trail Cornwall, New York 12518 Contact: Sergio Smiriglio Tel. (845) 534-3816 Fax. (845) 534-3314

Cultural Resources Consultant Columbia Heritage, Ltd. 56 North Plank Road, Suite 287 Newburgh, NY 12550 Contact: Steve Oberon Tel. (888) 294-4815 Fax. (845) 565-9504

<u>Air Quality Consultant</u> RTP Environmental Associates, Inc. 400 Post Ave. Westbury, NY 11590 Contact: Ken Skipka Tel. (516) 333-4526 Fax. (516) 333-4571

<u>Geotechnical Consultant</u> GEODESIGN INCORPORATED 984 Southford Road Middlebury, CT 06762 Tel. (203) 758-8836 Fax. (203) 758-8842 Lighting Consultant Holophane One Half Crossbar Road Hastings-On-Hudson, NY 10706 Contact: Andrew Gross Tel: (914) 693-7427 Fax: (914) 693-7451

PATTERSON CROSSING RETAIL CENTER Draft Environmental Impact Statement

Table of Contents

Volume II

Appendices

Appendix A	SEQRA Documentation
Appendix B	Correspondence & Contacts
Appendix C	Retail Market Data (Claritas Data)
Appendix D	Boring Logs and Boring Locations
Appendix E	Hydrogeology Investigation (Mounding Analysis)
Appendix F	Stormwater Pollution Prevention Plan
Appendix G	Water System Report
Appendix H	Patterson Crossing Water Supply Report
Appendix I	Air Quality Technical Report
Appendix J	PART Bus Route
Appendix K	Traffic Study
Appendix L	No Build Traffic
Appendix M	Wastewater Report
Appendix N	Phase 1 Cultural Resources Report
Appendix O	Supporting Information
Appendix P	Wetland Data Sheets
Appendix Q	Blasting Mitigation Plan

List of Drawings

Title

- VM-1 Vicinity Map Sheet 1 of 19 EX-1 - Existing Conditions Plan - Sheet 2 of 19 SP-1 - Overall Site Plan - Sheet 3 of 19 SP-2.1 - Layout & Landscape Plan - Sheet 4 of 19 SP-2.2 - Layout & Landscape Plan - Sheet 5 of 19 SP-2.3 - Layout & Landscape Plan - Sheet 6 of 19 SP-3.1 - Grading & Utilities Plan - Sheet 7 of 19 SP-3.2 - Grading & Utilities Plan - Sheet 8 of 19 SP-3.3 - Grading & Utilities Plan - Sheet 9 of 19 SP-4.1 - Overall Phasing Plan - Sheet 10 of 19 SP-4.2 - Sediment & Erosion Control Plan - Sheet 11 of 19 SP-4.3 - Sediment & Erosion Control Plan - Sheet 12 of 19 SP-4.4 - Sediment & Erosion Control Plan - Sheet 13 of 19 PR-1 - Proposed Access Road Profile - Sheet 14 of 19 L-1 Lighting Plan - Sheet 15 of 19 D-1 Site Details - Sheet 16 of 19 D-2 Site Details - Sheet 17 of 19 D-3 Site Details - Sheet 18 of 19
- D-4 Site Details Sheet 19 of 19

Appendix A

SEQRA DOCUMENTATION

New York State Department of Environmental Conservation Commissioner's Determination

of Lead Agency Under Article 8 of the

Environmental Conservation Law

PROJECT: Proposed Patterson Crossing Retail Center located in the Towns of Patterson and Kent, Putnam County

DISPUTING AGENCIES: Town of Patterson Planning Board and the Town of Kent Planning Board.

This decision to designate the Town of Patterson Planning Board as lead agency for the conduct of the environmental review under the State Environmental Quality Review Act (SEQRA) is made pursuant to Article 8 of the Environmental Conservation Law (ECL) and 6 NYCRR Part 617. This decision is based on my finding that the Town of Patterson Planning Board has the broadest governmental powers for the investigation of the impacts of the proposed action through its site plan review and crosion control permit authority over the majority of the potentially affected property.

The proposed project is the application by the Hudson Valley Realty Corporation (Corporation) to construct a 439,500 square foot "retail center" with 2,079 parking spaces on a 90.46 acre parcel located along the border between and containing acreage in both the Town of Patterson and the Town of Kent, Putnam County. All of the six proposed new buildings, nearly all of the parking lots (97% of proposed spaces), and the secondary access road would be constructed within the significantly larger section of the property (74.1 acres, or \sim 82%) which lies in the Town of Patterson. The primary access road and a corner of one of 5 parking pads would be located in the smaller section of the property (16.3 acres, or \sim 18%) lying in the Town of Kent.

The entire parcel abuts the western right-of way of Interstate Route 84 (I-84), and the proposed project would be constructed between I-84 and existing residential developments. A drainage divide splits the site, with flows going north and west into a direct tributary of Lake Carmel as well as east and south into the drainage system leading to the Great Swamp and East Branch of the Croton River. Most of the project site contains moderate to steep slopes and is forested, so site development would require substantial clearing and grading. On-site water supply and wastewater treatment systems will be required for the development as proposed

While a number of local and state agencies have jurisdictions governing the project, only the Plaining Boards of the Town of Patterson and the Town of Kent are contesting for lead agency! The Town of Patterson Planning Board (Patterson Board) jurisdictions are site Lead Agency Determination

development plan review plus an erosion control permit, and the Town of Kent Planning Board (Kent Board) jurisdictions are site development plan review plus erosion control, wetlands and sign permits.

The Patterson Board's jurisdictions apply to all activities on the portion of the property within the Town of Patterson, which includes the majority of the land clearing and new construction. The combination of site plan review and erosion control permits provides the Patterson Board with the authority to impose significant changes or conditions on the majority of the project's components, should those changes or conditions be identified as necessary to avoid or mitigate identified impacts.

Only a small portion of the project acreage is located within the Town of Kent; however, the project components proposed for that small area trigger multiple jurisdictions of the Kent Board. The main entrance and much of the primary access road from Route 311 are proposed to be within the Town of Kent, including a large sign at the base of the access road, near its intersection with Route 311. The access road itself would traverse 400 to 500 feet of relatively steep slopes, the lower roughly three-fourths of that length in the Town of Kent. Also within the Town of Kent portion of the site, segments of the access road plus a small corner of the parking area for buildings A, B and C are near a small stream. Altogether, the Kent Board has four bases for jurisdiction over those parts of the project within the Town of Kent: site plan review over only those elements of the proposed development in Kent plus local erosion control, wetlands and sign permits for specific areas or components. These jurisdictions would give the Kent Board authority to impose conditions, if necessary, to avoid or mitigate potential impacts associated with those project components within Kent.

In resolving a lead agency dispute, I am guided by the three criteria listed in order of importance in paragraph 6 NYCRR Part 617.6(b)(5)(v). These are:

(1) whether the anticipated impacts of the action being considered are primarily of statewide, regional or local significance (i.e., if such impacts are of primarily local significance, all other considerations being equal, the local agency involved will be lead agency);

(2) which agency has the brondest governmental powers for investigation of the impacts of the proposed action; and

(3) which agency has the greatest capability for providing the most thorough environmental assessment of the proposed action.

The first criterion relates to whether the anticipated impacts are primarily of statewide, regional or local significance. At present, the majority of the onsite physical construction is proposed to occur within the Town of Patterson, the existing residences actually adjoining the site are within the Town of Patterson, and the secondary access is proposed to be provided via streets within the Town of Patterson; thus, many impacts of construction and operation will be borne by the Town of Patterson or its residents. However, construction of the primary access road as proposed plus any offsite construction necessary to upgrade Route 311 or other portions of the existing road network, and subsequent use of those roads, will impact lands and residents

Patterson Crossing / Patterson v. Kent

Fage 3 of 6

of the Town of Kont. Since the impacts are primarily local in nature and both municipalities will likely be impacted, I must proceed to the next criterion in order to resolve this dispute.

The next criterion addresses the breadth of jurisdiction. Consideration of this criterion reveals a clear distinction between the disputing agencies. The Town of Patterson must issue a site development plan approval in order for the project to be constructed. Since the majority of the project site and proposed components are located in the Town of Patterson, this review will address most of the major concerns including the siting and construction of all of the proposed structures, nearly all of the proposed parking, and the internal roadways. Under its site development plan approval, the Town of Patterson Planning Board will have the authority to impose substantive conditions on the size and location of structures, parking, internal roads, and associated drainage management facilities to avoid or minimize the impacts that are identified during the environmental review.

In contrast, the Town of Kent's jurisdiction is limited to those project elements actually located within Kent: construction of the access road and, potentially, upgrading of the road network needed to accommodate the increase in traffic resulting from the project. The ability of the Town of Kent to impose substantive conditions and mitigation would also be limited to those components within the Town of Kent, Therefore, I find that the jurisdiction of the Patterson Board provides broader authority to review and provide mitigation for the anticipated impacts from this proposal.

The third criterion relates to the capacity of an agency to provide for a thorough environmental assessment. Both parties to this dispute possess the necessary staff or the ability to obtain the assistance of consultants to undertake an adequate environmental review for the proposed action. Given that weighing the second criterion has indicated a clear preference for the Patterson Board, however, consideration of the third criterion is not necessary for me to reach a decision.

I conclude, based on the facts presented, that the Town of Patterson Planning Board should be lead agency for the conduct of the environmental review for the proposed Patterson Crossing Retail Center due to the local nature of the impacts and the broad scope of authority afforded to the Patterson Board under its site development plan review and crossion control permit processes. I note, however, that the environmental review of the proposed project must aldress all potential impacts, including those which may primarily affect lands and residents of the Town of Kent.

This decision in no way limits the jurisdiction or responsibility of the Kent Board. I urge the Town of Kent to aptively contribute to the environmental review which the Patterson Board will direct. Further, I remind the Patterson Board that the environmental record which it will develop needs to address potential impacts identified by the Kent Board so that the common environmental record will satisfy both the Patterson Board and the Kent Board's needs for an environmental record on which to base approvals needed for all project components. Lead Agency Decomination

1

Patterson Crossing / Patterson v. Kent

Page 4 of c

						•			
		12 New	13	81	Ŀ	4			
	area:	Nori	Varle	D.C	-				Eri
A	Dany	new	TOLK		l				
						۰.			
						. (
	•			1					
		.÷							
	. <u>.</u>	: :						10 10	
			1				1		
		· ·		.	-				
			1					1	
				:					
		-							
	н К. (1						: · ·		
	:		:					•	
				l	• : .	· · ·	-	1 1	
		•	:	Ì		 -			
		• •	:						
	; '	÷			· ·		: .		
	•	5- s							
i		: .		1	:		: }		
				1					
i.	;	•	•	ļ.					
	· •								
		ie –				:	•		
			;						
- 1			-	. 1					
		;	÷ .	:					
		. :				:			
. :		÷. +	:		•				
			:	i		-			
		÷.•		: 1			į		
		;					:		
				•					
				1					
				:					
						:	ł		
, i				1		1			

Ĵ n M. Crotty, Commissioner

Patterson Crossing / Patterson v. Kent

Page Sof6

Distribution of Copies

٩Й

Lead Agency Determination

Disputing Agencies/Applicant:

Richard Williams, Planner, Town of Patterson Arthur Singer, Chair, Town of Kent Planning Board Hudson Valley Realty Corporation, attn: Paul Camarda

New York State Department of Environmental Conservation, Region 3:

Marc Moran, Regional Director Margaret Duke, Regional Permit Administrator

New York State Department of Environmental Conservation, Albany:

Michael Naughton, Counsel, Division of Legal Affairs Betty Ann Hughes, Division of Environmental Permits Patterson Crossing / Patterson v. Kent

Other Distribution:

Lead Agency Determination

Mr. Harold J. Gary Putnam County Department of Highways & Facilities 842 Fair Street Carmel, NY 10512

Mr. John Lynch, Director Puman County Department of Planning and Development 841 Fair Street Cannel, NY 10509

Mr. Michael J. Budzinski, P.E. Director of Engineering Putnam County Health Department Division of Environmental Health Services I Geneva Road Brewster, NY 10509

Mr. James Benson New York City Department of Environmental Protection Bureau of Water Supply 465 Columbus Avenue Valhalla, NY 10595

Mr. John M. Dunn, P.E. New York City Watershed Unit Bureau of Water Supply Protection New York State Health Department. 547 River Street 1roy, NY 12180-2216

NYS Department of Transportation: 4 Burneti Boulevard Poughkeepsie, NY 12603

Zoning Board of Appeals Town of Patterson P.O. Box 470 1142 Route 311 Patterson, NY 12563

Zoning Board of Appeals Town of Kent 531 Route 52 Carmel, NY 10512

US Army Corps, of Engineers 26 Federal Plaza New York, NY 10278-009

PLANNING DEPARTMENT.

P.O. Box 470 1142 Route 311 Patterson, NY 12563

> Melissa Brichta Secretary

Richard Williams Town Planner

Telephone(914) 878-6500FAX(914) 878-2019

TOWN OF A

ZONING BOARD OF APPEALS Howard Buzzutto, Chairman Mary Bodor Marianne Burdick Ginny Nacerino Lars Olenius

LANNING BOARD

Herb Schech, Chairman Michael Montesano David Pierro Shawn Rogan Maria Di Salvo

TOWN OF PATTERSON PLANNING & ZONING OFFICE

April 15, 2005

RE: Patterson Crossing Retail Center Town of Patterson, Putnam County

Dear Involved Agency:

Please find enclosed the final scoping document for the Patterson Crossing Retail Center.

The scoping document has been prepared for an application received by the Town of Patterson Planning Board for the construction of a 439,500 square foot retail center by Hudson Valley Realty Corp. entitled the Patterson Crossing Retail Center. The 94.94 acre parcel is located within the Town of Patterson (79.54 acre) and the Town of Kent (15.4 acres), Putnam County, NY. The subject parcels are currently identified on the Town of Patterson Tax Maps as parcels 33.-2-23, 22.-3-1 and 34.-2-3. The parcel located in the Town of Kent is identified on the Town of Kent Tax Maps as 22.-2-48.

Please feel free to contact my Office if you have any questions.

Sincerely yours, n May

Richard Williams Sr. TOWN PLANNER

FINAL

SCOPE FOR A

DRAFT ENVIRONMENTAL IMPACT STATEMENT

(DEIS)

THE PATTERSON CROSSING

INTERSTATE 84 AND NYS ROUTE 311

TOWNS OF PATTERSON AND KENT

PUTNAM COUNTY, NY

Adopted: April 14, 2005

Lead Agency and Contact Person:

Planning Board Town of Patterson 1142 Route 311 P.O. Box 470 Patterson, NY 12563

Chairman Herb Schech

Contact: Richard Williams Sr., Planner

PROJECT DESCRIPTION

SEQRA Classification of Action: Type 1

Description of Proposed Action

The Town of Patterson Planning Board has received an application for site plan approval from the Hudson Valley Realty Corp. to construct a "retail center" entitled "Patterson Crossing" on 90.46+ acres of undeveloped land. The Project proposes 439,500 s.f. of retail space (including the garden center), with parking for 2,079 cars. Access will be from NYS Route 311, approximately 1,000 feet west of the I-84 intersection. Water to the site will be supplied from groundwater wells with an anticipated daily usage of 15,675 gallons per day. The Project Sponsor is evaluating various options to address wastewater disposal. An application has been submitted to the NYC Department of Environmental Protection for inclusion in the Pilot Offset Program which would allow the construction of a wastewater treatment plant. A series of stormwater basins will be used as the primary method of managing post-development stormwater runoff. A stormwater pollution prevention plan will be developed meeting the Town of Patterson, Town of Kent, NYS Department of Environmental Conservation and NYC Department of Environmental Protection requirements. The Project Sponsor is also proposing to complete remedial repairs to an eroding stream channel on the site which conveys runoff from the residentially-developed areas west of the site to a tributary of the Middle Branch Croton River.

Site Location

The project is located on the south side of New York State Route 311, approximately 1,000 feet west of the of the intersection of Interstate 84. The project site lies in the Town of Patterson and the Town of Kent, Putnam County. Three parcels are located in the Town of Patterson and have a combined area of $74.1\pm$ acres. An additional $16.3\pm$ acres of the project site, which abuts Route 311 and from which access is derived, is located in the Town of Kent. The project is located in the East Branch Croton Reservoir, and Middle Branch Croton Reservoir watersheds.

Potentially Significant Adverse Impacts

- A. The proposed action will require the physical alteration of approximately 60 acres and the permanent conversion of 32.4 acres of site into impervious surface. This disturbance may have an adverse impact on surface water quality and quantity through increased erosion, loss of vegetation, changes in hydrology and increased pollution from the creation of large areas of impervious surfaces.
- B. The proposed action may substantially increase the quantity of traffic on the area's roads.

Patterson	Planning	Board	
Patterson	Crossing	Retail	Center

Final Scope

- C. The creation of large areas of impervious surface may restrict groundwater recharge and affect available ground water resources.
- D. The proposed action may adversely affect human and community resources through increased noise, increased demand for fire or police services, and increased light pollution.

Final Scope

GENERAL GUIDELINES

1. The Environmental Impact Statement ("EIS") should be written in the third person, i.e., the terms "we" and "our" should not be used. The Applicant's conclusions and opinions should be identified as those of "the Applicant" or "the Developer".

The "draft" EIS should include a discussion of each item identified in this Scoping Document. Existing conditions, where appropriate future conditions without the project (*i.e.* "no action alternative"), and future conditions with the project as presently planned should all be discussed within each sub-category (e.g. soils, surface water, traffic, etc.) rather than as separate sections. For each identified adverse impact, also discuss any mitigation that is needed to minimize, to the maximum extent practical, any identified adverse impacts.

- 2. Narrative discussions should be accompanied by appropriate tables, charts, graphs, maps and diagrams whenever possible. If a particular subject matter can be most effectively described in graphic format, the narrative discussion should merely summarize and highlight the information presented graphically. All plans and maps showing the site should include adjacent properties (if appropriate), neighboring uses and structures, roads, and water bodies.
- 3. Information should be presented in a manner which can be readily understood by the public. Where technical terms are used, they should include an explanation of their meaning.
- 3. The entire document should be checked carefully to ensure consistency with respect to the information presented in various sections.
- 4. The level of detail provided should be sufficient to ensure that the EIS will be adequate to support the SEQR findings of <u>all involved agencies</u> and should include any pending rules and regulations which may impact the project.
- 5. Any assumptions incorporated into the assessment of an impact should be clearly identified. In such cases, the "worst case" scenario analysis should also be identified and discussed.

PROJECT SCOPE

COVER SHEET

- A. Identify whether it is a "Draft" or "Final" Environmental Impact Statement
- B. The name of the project.
- C. The location of the project.
- D. The name and address of the project sponsor, and the name and contact information of the contact person representing the Applicant.
- E. The name and address of the primary preparer(s) of the EIS, and the name and telephone number of a contact person representing the preparer.
- F. The name and address of the Lead Agency (Town of Patterson Planning Board) for the project and the name and telephone number of the person to be contacted for further information.
- G. The date of acceptance of the DEIS or FEIS.
- H. Date of Public Hearing and deadline for written comments on the DEIS
- I. List of Consultants involved with the project including: names, addresses, FAX numbers and project responsibilities of all consultants involved with the project.

TABLE OF CONTENTS

A. All headings which appear in the text should be presented in the Table of Contents along with the appropriate page numbers. In addition, the Table of Contents should include a list of figures, a list of tables, a list of appendix items, and a list of additional EIS volumes, if any.

I. SUMMARY

- A. Brief description of the Proposed Action including public need and benefits, including social and economic considerations.
- B. List of Involved and Interested Agencies and required approvals/permits.
- C. A brief listing of the anticipated adverse impacts and proposed mitigation measures

for each impact category discussed in the DEIS. The presentation should be simple and concise.

- D. A brief description of the alternatives considered in the DEIS. A table should be presented which assesses and compares each alternative relative to the various adverse impacts identified.
- E. Alternatives considered
- F. A listing of matters to be decided which are not included in "B" above.

II. PROJECT DESCRIPTION

A. LOCATION

- 1. Background and history
- 2. Describe the geographic boundaries of the proposed project site.
 - a. Provide the tax map designation of Site in both Patterson and Kent.
 - b. Describe the road network surrounding the site, and means of access to the site.
 - c. Include a location map.
- 3. Objectives of the Project Sponsor
 - a. Describe range of market area and type of retail center (neighborhood, regional, etc.)

B. REGIONAL SETTING

- 1. Describe the existing land use and zoning in both Patterson and Kent
 - a. Describe existing land use of project site.
 - b. Discuss how the proposed use of the site relates to the Town of Patterson Comprehensive Plan and the Town of Kent Comprehensive Plan that include project site and surrounding area
 - c. Describe zoning of site and surrounding area.

2. Provide a description of the land use surrounding the site.

C. DESIGN AND LAYOUT

- 1. Structures
 - a. Gross area
 - b. Layout of buildings
 - c. Building use
 - d. Site Plans and building elevations
 - e. Drainage Plans
 - f. Utilities Layout
- 2. Parking
 - a. Number of parking spaces and layout
- 3. Description of access to the site.
 - a. Primary access
 - b. Pedestrian access
 - c. Emergency access
 - d. Access through adjoining residential neighborhoods
- 4. Landscaping Plan
 - a. Quantity, location and type of proposed landscaping
 - b. Setbacks and Buffer treatments
- 5. Water supply
 - a. Well location
 - b. Anticipated use requirements
- 6. Sewage disposal system
 - a. Location
 - b. Anticipated sewage flows
- 7. Site Lighting
 - a. Type of lighting proposed.
 - b. Proposed lighting levels

Final Scope

- 8. Site coverage.
 - a. Proposed impervious surface area (roofs, parking lots, roads)
 - b. Amount of land to be cleared with description of cover type, i.e. woodland, farmland, etc.
 - c. Amount of open space to remain under control of project sponsor.
 - d. Proposed conservation areas and disposition.

D. CONSTRUCTION AND OPERATION

- 1. Construction
 - a. Total construction period anticipated
 - b. Schedule of construction (sequencing)
 - c. Phasing
 - d. Winter operations
 - e. Construction traffic.
 - f. Dust Suppression
 - g. Erosion and sediment control
 - h. Blasting operations

2. Operation

- a. Equipment and materials storage and/or staging areas.
- b. Schedule of operation (hours, shifts, holidays)
- c. Anticipated number of employees
- d. Deliveries, means, methods and times of.
- e. Lighting and Security

III. ECONOMIC AND SOCIAL BENEFITS

- A. Benefits of the proposed action
 - 1. Economic
 - a. Discuss the existing cost of services and tax revenue generated by the site for:
 - 1. Town of Patterson
 - 2. Town of Kent

Patterson Planning Board Patterson Crossing Retail Center Final Scope

April 14, 2005 Page 8 of 28

- 3. Putnam County
- 4. Carmel Central Schools
- b. Discuss the expected, or anticipated cost of services and tax revenue generated by completed project for:
 - 1. Town of Patterson
 - 2. Town of Kent
 - 3. Putnam County
 - 4. Carmel Central Schools
- 2. Environment
- 3. Social
 - a. Need for retail
- 4. Employment
 - a. Describe existing employment conditions in the area
 - b. Employment opportunities during construction
 - c. Employment opportunities post-construction, including (type and salary levels)

IV. ENVIRONMENTAL SETTING, ANTICIPATED IMPACTS, AND PROPOSED MITIGATION MEASURES

- A. GEOLOGY
 - 1. Existing Conditions
 - a. Composition and thickness of bedrock material
 - 1. Depth to, and nature of, subsurface bedrock formations.
 - 2. Location and extent of any surficial bedrock.
 - 2. Future "No Build" Conditions
 - a. Describe future conditions without project.
 - 3. Future Conditions with Project.

- a. Describe area and depth of bedrock removal required, if any.
- b. Describe final disposition of any excavated bedrock.
- c. Blasting
 - 1. Identify and discuss state and local requirements regulating blasting.
 - 2. Identify volume of rock requiring blasting.
- 4. Mitigation Measures
 - a. Discuss blasting plans and controls.
 - b. If blasting is required, schedule and warning system to be approved by Town(s)
- B. SOILS
 - 1. Existing conditions
 - a. Soil types based on USDA NRDC soil classifications (include map)
 - 1. Location
 - 2. Characteristics, hydrologic soil group designation, and engineering properties including the Erosion "K" factor.
 - 3. Suitability of their intended use.
 - 4. Depth to water table.
 - 2. Future "No Build" Conditions.
 - a. Describe future conditions without project.
 - 3. Future conditions with project.
 - a. Quantitative estimate of cut and fill to site.
 - 1. Provide data on anticipated cut and fill volumes from site
 - 2. Provide a preliminary grading plan showing existing and proposed grading on the site.
 - 3. Discuss impact if cuts and fills are not balanced.
 - 4. Mitigation Measures
 - a. Design adequate soil erosion and sediment control devices to protect slope areas and surface waters, including retention/detention areas.

- b. Site phasing
- c. Use of retaining walls to reduce embankment regrading when possible.

C. TOPOGRAPHY

- 1. Existing Conditions
 - a. Description of topography at project site
 - Slopes

 a. 0-8%
 b. 9-15%
 c. 15-25%
 d. 25% or greater
 - 2. Prominent or unique features
 - 3. Description of topography of surrounding area
- 2. Future "No Build" Conditions.
 - a. Describe future conditions without project.
- 3. Future Conditions with project.
 - a. Describe changes to site topography
 - b. Compare pre-development and post-development topography.
 - c. Discuss the potential for slope instability
- 4. Mitigation Measures
 - a. Avoidance of construction on steep slopes.
 - b. Construction where unsuitable material encountered.

D. GROUNDWATER

- 1. Existing Conditions
 - a. Location and description of aquifer and recharge areas
 - 1. Depth to water table
 - 2. Fracture Trace Analysis
 - 3. Define area contributing to recharge of the site.

- b. Identification of present uses and level of use of groundwater
 - 1. Location of existing wells
 - a. Discuss number of wells and water usage within area contributing to recharge of the site, and at a minimum those wells within 2,000 feet of proposed wellhead
 - b. Public/private water supply
 - c. Industrial uses
 - 2. Well test protocol
 - a. Conduct simultaneous 72-hour continuous pump test at the estimated maximum daily demand for the proposed wells for Patterson Crossing. Prior to conducting the test a plan shall be prepared describing the test parameters and submitted to the Putnam County Health Department and Patterson Planning Board, as lead agency. The test parameters shall include monitoring of one or more of the adjacent residential wells.
 - b. Near the end of the test, samples will be collected from each well for analysis of the water-quality parameters to be determined by Putnam County Health Department and the Patterson Planning Board as lead agency.
- 2. Future Conditions without project.
- 3. Future Conditions with project.
 - a. Describe loss of recharge area based on hydrogeologic study which includes calculations of pre- and post-construction changes in groundwater recharge.
 - b. Identify effect on neighboring wells from well-yield test.
 - c. Discuss potential impacts to groundwater resources from construction, including blasting.
- 4. Mitigation Measures
 - a. Maintain permeable areas on the site
 - b. Contingency plans for accidental spills

c. Potential scheme for mitigating impacts to area wells such as long term monitoring.

E. SURFACE WATER

- 1. Existing Conditions
 - a. Describe existing drainage areas
 - 1. Middle Branch Watershed
 - 2. East Branch Watershed
 - 3. Identify discharge points of existing drainage
 - Describe current quantity of stormwater runoff for the 90th percentile,
 1, 2, 10, 25 and 100 year 24 hour storm events.
 - c. Describe current quality of stormwater relative to the following pollutants:
 - 1. Total phosphorus
 - 2. Total nitrogen
 - 3. Biological oxygen demand
 - 4. Suspended solids
 - d. Describe runoff from existing residential area entering onto site.
- 2. Future "No Build" Conditions
 - a. Describe future conditions without project.
- 3. Future Conditions with project.
 - a. Describe the post-development quantity of stormwater runoff for the 90th percentile, 1, 2, 10, 25 and 100 year 24 hour storm events.
 - b. Describe the post-development quality of stormwater runoff relative to the following pollutants:
 - 1. Total Phosphorus
 - 2. Total nitrogen
 - 3. Biological oxygen demand
 - 4. Suspended solids
 - c. Describe the quantity and quality of stormwater runoff during construction.
 - d. Potential for sedimentation and erosion

- e. Assess the potential thermal impacts to downstream fish habitat in the Middle Branch River.
- f. Potential for failure of detention ponds.
- g. Discuss the use of de-icing materials on the quality of surface runoff.
- h. Increase in nutrients associated with parking areas such as petroleum, antifreeze and refuse.
- i. Future monitoring of basins and stormwater discharged from site.
- j. Conduct a detailed geomorphic assessment in accordance with the New York State Stormwater Management Design Manual Appendix J for any drainage basin with 50 acres of developed area with an impervious cover greater than 25%.
- k. Discuss the potential for stormwater basins being used by mosquitos for breeding, including any design or control measures to inhibit mosquito breeding.
- 1. Discuss any of-site road improvements and stormwater practices.
- 4. Mitigation measures
 - a. Include a conceptual Stormwater Pollution Prevention Plan that meets the Town's, City's and State's regulatory requirements. The conceptual plan should include sequence of construction, sediment and erosion control measures, and description of BMP's, with a goal of zero-net increase in runoff rate and zero-net increase from pollutants such as phosphorus and suspended solids from the predevelopment condition for each individual sub-watershed basin.
 - b. Design parking lot to reduce stormwater runoff to the maximum extent practicable.
 - c. Describe proposed use of stormwater runoff from roof surfaces for irrigation use onsite and for Garden Center.
 - d. Provide treatment of stormwater generated from adjoining residential areas
 - e. Stabilize existing streambank erosion problem.
 - f. Employ the use of soil erosion control techniques during construction and operation to avoid siltation, including:
 - 1. Implementation of a soil erosion control plan based on the latest New York State technical guidance for controlling erosion and sedimentation.
 - 2. Phasing of construction.
 - 3. Construction Sequence
 - 4. Maintenance requirements during construction
 - 5. Post construction maintenance requirements
 - 6. Responsible parties for implementation and maintenance of

erosion control measures and stormwater facilities during construction and post-construction.

g. Discuss the use of Low Impact Development Techniques (LID) including pervious pavement.

F. WETLANDS, STREAMS AND WATER BODIES

- 1. Existing Conditions
 - a. Identify United States Army Corps of Engineers (USACE), State and local jurisdictional wetland areas and buffers within or contiguous to the project site.
 - 1. Acreage
 - 2. Vegetative Cover
 - 3. Functional value
 - 4. Classification or level of importance
 - 5. Description of wetland types
 - 6. Wildlife habitat
 - b. Identify State, local or NYC Department of Environmental Protection streams on the site, or any streams that may be discharged to.
 - 1. Seasonal variation
 - 2. Size
 - 3. Discuss the existing condition of the steam channel and identify any areas of streambank erosion.
 - 4. Benefits provided (wildlife, recreation, etc.)
 - 5. NYS DEC Classification
 - a. No. H-31-P44-23-P59-6
 - c. Identification of flood plains, discussion of potential for flooding
 - d. Discuss the existing condition of Lake Carmel.
- 2. Future "No Build" Conditions.
 - a. Describe Future conditions without project.
- 3. Future Conditions with project.

- a. Disturbance to Town regulated wetlands in connection with storm water discharge into the Middle Branch Croton River
- b. Potential alteration of natural hydrology of wetlands on the site
- c. Impacts to wildlife
- d. Identify any changes to existing streams on the site.
- e. Discuss the effect that the proposed action will have on the water quality of Lake Carmel.
- 2. Mitigation measures

G. VEGETATION AND WILDLIFE

- 1. Existing Conditions
 - a. Description of vegetative cover presently on the proposed project site.
 - b. Description of wildlife currently inhabiting the proposed project site.
 - c. Identification of any endangered or threatened vegetation or wildlife existing on the site.
 - 1. Contact NYS DEC Wildlife Resource Center to identify the presence of any rare, threatened, or endangered species or concern that may be known to inhabit the site.
 - 2. Qualified personnel to perform field survey.
- 2. Future "No Build" Conditions
 - a. Describe future conditions without project.
- 3. Future Conditions with project.
 - a. Discuss potential for loss of wildlife habitat.
 - b. Discuss potential impact to rare or endangered species.
- 4. Mitigation Measures
 - a. Dedication of restricted open space
 - b. Remove minimum amounts of forest cover
 - c. Leave clusters of trees wherever possible
 - d. Leave vegetative buffers along stream banks
 - e. Landscape with native vegetation that provides high quality wildlife habitat.

H. TRANSPORTATION

1. Existing conditions

- a. Description of size, capacity, geometry and condition of services.
 - 1. Roads (I84, Rt.311, Rt.52, Fair Street)
 - 2. Traffic control
 - 3. Local Accident data
 - 4. Route 311 causeway at Lake Carmel
 - 5. Route 311 between Ludingtonville Road and Cushman Road
- b. List of intersections to be studied (A discussion of the methodology used should be included).
 - 1. NYS Route 311 and Route 52
 - 2. NYS Route 311 and Terry Hill Road/North Terry Hill Road
 - 3. NYS Route 311 and Longfellow Drive
 - 4. NYS Route 311 and Ludington Court
 - 5. NYS Route 311 and I-84 eastbound, including ramps
 - 6. NYS Route 311 and I-84 westbound, including ramps
 - 7. NYS Route 311 and Ludingtonville Road (CR-43)
 - 8. NYS Route 311 and Fair Street(C.R.60)
 - 9. NYS Route 311 and NYS Route 164
 - 10. NYS Route 311 and Site Access (Build-Condition only)
 - 11. Horsepond Road (south) and Route 52
 - 12. Barrett Hill Road and Route 52
 - 13. Terry Hill and Fair Street

c. Description of current level of services

- 1. Discuss occurrence of peak hour traffic patterns for retail activities
- 2. PM and Saturday peak hour traffic flows
- 3. Vehicle mix
- 4. Source of existing traffic

d. Public Transportation

- 1. Description of current availability of service
- 2. Description of present level of use.

- 2. Describe future conditions without project.
- 3. Future Conditions (Based on a Project completion in 2010)
 - a. PM and Saturday peak hour traffic flows.
 - b. Analysis of increase in traffic as a result of project, including site access, road conditions, sight distance, queue lengths, storage capacity and character.
 - c. Potential impact from truck traffic on roads and intersections.
 - d. Increased traffic related to project construction.
 - e. Analysis of internal traffic circulation.
 - f. Discuss the potential increase in traffic from vehicles using North Terry Hill/Putnam Drive as a short cut.
- 4. Mitigation Measures
 - a. Discuss road improvements (as needed)
 - 1. Types of improvements (e.g., traffic control at intersections, road widening, intersection improvements, drainage improvements, surface improvements, etc.)
 - 2. Responsibility for improvements
 - 3. Methods of funding as appropriate.
- I. NOISE
 - 1. Existing conditions
 - a. Existing noise levels from proposed project site.
 - b. Analyze three receptor locations as follows:
 - 1. In general area of northeast terminus of Greenwood Court.
 - 2. At property line abutting residential properties along Concord Road.
 - 3. At property line abutting residential properties along Vernon Drive.
 - 2. Future "No Build" Conditions
 - a. Describe future conditions without project.
 - 3. Future Conditions
 - a. Discuss noise levels during construction including hours of operation.

Patterson Planning Board Patterson Crossing Retail Center Final Scope

- b. Discuss noise levels post-construction including hours of operation and deliveries. The discussion should include the anticipated increase in noise on adjacent residential areas, especially during evening/sleep hours and anticipated use of exterior loudspeakers.
- 4. Mitigation measures
 - a. Schedule construction during "normal business" hours to minimize noise impacts during sensitive times such as early morning and late night.
 - b. Assure adherence to construction noise standards.
 - c. Sound barriers for adjacent residential areas
 - 1. Describe various types of sound barriers such as vegetative buffers and fences and their ability to reduce noise.
 - 2. Use of building location to serve as sound barrier.
 - d. Locating loading dock areas away from adjacent residential areas.
- J. UTILITIES
 - 1. Wastewater Disposal
 - a. Future Conditions
 - 1. Discuss proposed method of providing wastewater treatment.
 - 2. If a wastewater treatment plant with surface discharge is proposed, identify receiving water body and discuss ability of water body to assimilate effluent.
 - 3. Discuss alternative method of providing for wastewater treatment meeting current regulatory requirements.
 - 4. Identify any water quality impacts associated with wastewater disposal.
 - b. Mitigation Measures
 - 1. Discuss NYC Department of Environmental Protection Pilot Phosphorous Offset Program and proposed methods to provide offsets.
 - 2. Electric and Gas
 - a. Existing Conditions

Final Scope

1. Identify provider and available service in the area

b. Future Conditions

1. Discuss demand created for electric, fuel oil and/or gas

c. Mitigation

- 1. Incorporate energy savings measures into facility design
- 2. Install utility services underground.
- 3. Discuss use of energy saving technologies such as geothermal heating and cooling.

3. Solid Waste Disposal

- a. Existing Conditions
 - 1. Identify method of solid waste disposal in area of site

b. Future Conditions

- 1. Identify level of wastes to be generated.
- 2. Discuss the potential impacts from the location of compactors and/or refuse storage areas on the surrounding area.
- 3. Discuss the potential increase in rodent or scavenger populations.

c. Mitigation Measures

- 1. Ensure proper disposal techniques for solid waste.
- 2. Identify methods that will be used to maximize recycling.
- 3. Discuss means that will be used to control litter and maintain parking area in a clean condition.
- 4. Identify methods that will be used to control rodents and other scavengers such as use of containers with lids.

K. COMMUNITY SERVICES AND FACILITIES

- 1. Police Protection (State, County and local) and Security
 - a. Existing conditions

Final Scope

- 1. Review existing police protection capabilities in Patterson and Kent, including response time and human resources.
- b. Future Conditions
 - 1. Security and traffic
 - 2. Discuss traditional police or security demands from other comparable projects operated by the applicant or prospective retail stores to operate at this site.
 - 3. Emergency Access
 - 4. Pedestrian trespass or "shortcutting" through private property
 - 5. Identify and increase in costs to Town(s) or County.
- c. Mitigation measures
 - 1. Internal security system and surveillance cameras.
 - 2. Evaluate effectiveness of fencing and/or landscape buffers to prevent "shortcutting" through private property, and other non-intrusive security measures to protect the adjacent residential homes.
 - 3. Security provisions for emergency road.
- 2. Fire Protection
 - a. Existing Conditions
 - 1. Review existing fire fighting capabilities in Patterson and Kent, including response time and human resources.
 - 2. Identify primary response provider.
 - b. Future Conditions
 - 1. On-site fire protection measures
 - 2. Emergency response
 - 3. Include an assessment of equipment type by responding agency and an assessment of whether the available equipment (i.e. ladder truck/ pumper truck) would be adequate for the height and size of the buildings proposed.
 - 4. Assess the water supply needs to fight a worst-case fire event.
 - 5. Identify and increase in costs to Town(s) or County.

- c. Mitigation Measures
 - 1. Discuss fire protection measures that will be incorporated into site design
 - 2. Assure adequate water and vehicular access for fire fighting
 - 3. Discuss any mutual aid agreement between the Patterson and Kent Fire Departments that may impact the Project.
- 3. Health care facilities and emergency services (hospitals and ambulance)
 - a. Existing conditions
 - 1. Identify existing facilities and service in terms of location and response time
 - b. Possible Impacts
 - 1. Employee or customer illness or injury
 - c. Mitigation Measures
 - 1. Protocols for responding to on-site accidents
 - 2. Provisions (if any) for air lifting trauma patients from site.

L. SOCIOECONOMIC

- 1. Identify the characteristics of existing community retail centers for Patterson and Lake Carmel.
 - a. Identification of the types of commercial establishments that are likely or unlikely to draw from the community retail centers.
 - b. Project how the proposed project may affect the community retail centers.
 - 1. Increased economic growth of supporting businesses in the area, such as gas stations, restaurants and office supply businesses.
 - 2. Describe likely economic effect or synergy with businesses in identified community retail centers.

c. Mitigation Measures

- 1. Discuss mitigation needed, if any to address increase in cost of services provided by municipalities.
- 2. Identify any tax incentives which may reasonably be anticipated will be applied to the project.

2. Retail Opportunities

- a. Discuss the existing regional shopping opportunities.
- b. Discuss disposable income and local spending habits.
- c. Discuss the existing travel patterns, vehicle miles traveled and energy consumption.

M. CULTURAL RESOURCES

- 1. Historic and archeological resources
 - a. Existing Conditions
 - 1. Location and description of historical areas or structures listed on State or National Register or designated by the community, or included on a Statewide Inventory
 - 2. Identify areas of site and/or adjoining site that have potential significant archaeological value, including results of a Phase IA cultural resource inventory
 - b. Possible Impacts
 - c. Mitigation Measures
- 2. Visual Resources.
 - a. Existing Conditions
 - 1. Description of the physical character of the community.
 - 2. Prepare a viewshed analysis.
 - 3. Description of natural areas of significant scenic value, if any exist in the immediate area
 - 4. Identification of structures of significant architectural design
 - b. Future Conditions

- 1. Visual impact to views from nearby roads and highways visible to the project site.
- 2. Visual impact to views from residential areas.
- 3. Signage
- 4. Site Lighting
 - a. Discuss how site lighting during nighttime hours will effect the surrounding area, especially the nearby residences.
 - b. Discuss impacts from different types of lighting (Metal Halide, low pressure sodium and high pressure sodium)
 - c. Include a photogrammetric map depicting the light levels at the property lines of the project and extending for a distance of 200 feet.

c. Mitigation measures

- 1. Visibility of site from NYS Route 311 due to topography.
- 2. Viewshed will be limited to I-84 due to setback requirements, landscaping, and design of facility
- 3. Minimize visual impact through thoughtful and innovative design of signs to consider height, size, and design.
- 4. Minimize visual impact through thoughtful and innovative design of lighting to consider height, size, intensity, glare, and hours of lighting operation.
- 5. Minimize visual impact of proposed buildings through thoughtful design and use of earthtone colors and natural materials for buildings.
- 6. Design landscaping to be visually pleasing
- 7. If on-site water supply is required, tanks will be stored underground
- 8. Fencing

N. CUMULATIVE IMPACTS

1. Possible Impacts

a. Discuss the cumulative impacts of the proposed project, based on a design year of 2010, along with other projects of significant size which have applications pending before the Planning Board(s) of the Town of Patterson, Kent, Southeast and Carmel which have received

Patterson Planning Board Patterson Crossing Retail Center Final Scope

at least a conceptual review, or have received approvals and construction has yet to be completed. Projects of significant size include residential subdivisions or site plans of forty-nine or more units and commercial projects of 40,000,or more, square feet. Evaluated projects should include Hillcrest Commons and Chestnut Petroleum.

O. AIR QUALITY

- 1. Existing Conditions
 - a. Description of existing ambient air quality levels based on closest SCAMS/NAMS station.
 - b. National and State Air Quality Standards The air quality existing condition and impact effort will include first level screening of traffic data for potentially impacted locations within the study area. The study area is defined as an area extending 500 feet from the north, east and west property line and 1,000 feet from the west property line and along NYS Route 311. The screening effort will be followed by computer modeling analyses for a minimum of three sites to determine the magnitude of the action's impact. Final modeling will include CAL3QHC and MOBILE5B analyses for Carbon Monoxide (CO). Emission models, modified per the current NYSDEC guidance (if any). All modeling will conform to NYSDOT's Environmental Procedures Manual.
- 2. Future "No Build" Conditions
 - a. Mobile Source Analysis
 - b. Stationary Source Analysis
 - c. Consistency with New York State Air Quality Implementation Plan.
- 3. Possible Impacts This analysis will include the proposed build scenario and is limited to one set of traffic data (existing conditions, no action and one full build scenario).
 - a. Mobile Source Analysis
 - b. Stationary Source Analysis
 - c. Consistency with the New York State Air Quality Implementation Plan.
- 3. Mitigation Measures

- a. Truck idle time will be limited to 5 minutes or less
- b. Dust control measures will be employed during site construction.

V ADVERSE ENVIRONMENTAL IMPACTS WHICH CANNOT BE AVOIDED IF THE PROJECT IS IMPLEMENTED.

VI ALTERNATIVES

- A. No Action
 - 1. Impacts of no action
 - a. Effects on public need
 - b. Effects on private developers' need
 - c. Beneficial or adverse environmental impacts
- B. Alternative Scale or Magnitude
 - 1. Alternate site plan layout
 - a. Building Orientation
 - b. Minimize parking area with multi-story parking facilities, and including below ground parking.
 - 2. Alternate project size
 - a. Describe and evaluate a retail center of approximately 350,000 sq. ft.
- C. Alternative Use
 - 1. Consider an alternative use for property which complies with existing zoning (light industrial).

VII. IRREVERSIBLE AND IRRETRIEVABLE COMMITMENT OF RESOURCES

Identify those natural and human resources listed in Section II that will be consumed, converted, or made unavailable for future use.

VIII. GROWTH INDUCING ASPECTS

This section describes the potential growth aspects the proposed project might have. Listed below are examples of areas of concern that are typically affected by the growth induced by a project.

A. POPULATION

- 1. Increases in business and resident population due to creation or relocation of business.
- 2. Increases in resident population due to the creation of jobs to be filled by people outside the Putnam County region.

B. SUPPORT FACILITIES

- 1. Business created to serve the new facility
- 2. Service industries created to supply the new facility
- C. DEVELOPMENT POTENTIAL
 - 1. Introduction or improvement of infrastructure (roads, waste disposal, sewers, water)
 - 2. Creation of further growth potential by construction of improved infrastructure

IX EFFECTS ON THE USE AND CONSERVATION OF ENERGY RESOURCES

Identify the energy sources to be used, anticipated levels of consumption and ways to reduce energy consumption.

X APPENDICES

The following is a list of materials typically used in support of the EIS. This list will include supporting studies required as part of the DEIS.

- A. List of underlying studies, reports, and information considered or relied on in preparing the statement. The DEIS should include any pertinent excerpts of those studies to facilitate review of the DEIS.
- B. A copy of the Positive Determination and final Scoping Document.
- C. List of all federal, state, regional, or local agencies, organizations, consultants, and private persons consulted in preparing the statement.

- D. Relevant correspondence regarding the project and issues discussed in the DEIS.
- E. Technical exhibits and studies, including traffic impact study, stormwater management, water supply, wastewater treatment, economic feasibility study, etc.

Patterson Planning Board Patterson Crossing Retail Center Final Scope

April 14, 2005 Page 28 of 28

PART 1 - PROJECT INFORMATION Prepared by Project Sponsor

NOTICE: This document is designed to assist in determining whether the action proposed may have a significant effect on the environment. Please complete the entire form, Parts A through E. Answers to these questions will be considered as part of the application for approval and may be subject to further verification and public review. Provide any additional information you believe will be needed to complete Parts 2 and 3.

It is expected that completion of the full EAF will be dependent on information currently available and will not involve new studies, research or investigation. If information requiring such additional work is unavailable, so indicate and specify each instance.

NAME OF ACTION		
Patterson Crossing Retail Center		
LOCATION OF ACTION (Include Street Address, Municipality and County)		
NYS Route 311, Town of Patterson and Kent, Putnam County		
NAME OF APPLICANT/SPONSOR	BUSINESS TELEF	PHONE
Patterson Crossing Realty, LLC	845-224-1400	
ADDRESS		
1699 Route 6, Suite 1		
CITY/PO	STATE	ZIP CODE
Carmel	NY	10512
NAME OF OWNER (if different)	BUSINESS TELEF	HONE
Cushman Montgomery	850-385-0070	
ADDRESS		
C/O Charles Gardner Esq. / 300 Thomas Wood Drive		
CITY/PO	STATE	ZIP CODE
Tallahasee	Florida	
DESCRIPTION OF ACTION		
Site Plan approval for development of a Retail Center, parking and stormwater	management fa	cilities. See
attachment A	-	
Please Complete Each Question - Indicate N.A. if not applicable		

A. Site Description

Ph	sical s	settina	of	overall	project.	both	developed	and	undevelo	pped	areas
	Joioui	ooung	v.	ovoran	project.		acveloped	anu	UIUEVEN	JDEU	areas

1.	Present land use:	🗆 Urban 🛛	Industrial		Commercial	🛛 Residential (suburban)	Rural (non-factor)	arm)
		Forest	□ Agriculture		Other Exist	ing Telecommunio	ation buildi	ng at southern pa	irt of the
sit	e					-		-	
2.	Total acreage of pro	oject area:		90.5	acres.				
	APPROXIMATE ACR	EAGE			_	PRES	ENTLY	AFTER COM	PLETION
	Meadow or Bushland	(Non-agricultural)			2.0	acres	2.0	acres
	Forested					87.7	acres	28.2	acres
	Agricultural (Includes	orchards, croplar	nd, pastures, e	etc.)	,	0	acres	0	acres
	Wetland (Freshwater	or tidal as per Art	icles 24, 25 o	r ECl	L _	0.2	acres	0.2	acres
	Water Surface Area					0.1	acres	0.1	acres
	Unvegetated (Rock, e	earth or fill)				0	acres	0	acres
	Roads, buildings and	other paved surfa	aces			0.5	acres	34.2	
	Other (Indicate type)	Landscape management	and facilities	stor	mwater	0	acres	25.8	acres
3.	What is predominar	nt soil type(s) or	project site	?	PnB, l	PnC, PnD, WdB an	d CsD		
		Well Drained			% of site	Moderately we	ell drained		% of site
	I	Poorly Drained		17	% of site		-		
	b. If any agricultural	land is involved, h	ow many acre	es of	soil are classif	ied within soil group	1 through 4	of the NYS	
	Land Classification				acres. (See 1 N				

4. Are there bedrock outcroppings on project site? Yes □ No a. What is the depth to bedrock? 0-37 (in feet)

5. Approximate percentage of proposed site with slopes:	■ 0-10% 54.5 % □ 10-15% 20.6 %
 Is project substantially contiguous to, or contain a buil Places? □ Yes ■ No 	■ 15% or greater % ding, site, or district, listed on the State or National Registers of Historic
7. Is project substantially contiguous to a site listed on the	Register of National Natural Landmarks? 🗆 Yes 🛛 🔳 No
8. What is the depth of the water table? 1.5 to >6	(in feet)
9. Is site located over a primary, principal, or sole source a	aquifer? 🗌 Yes 🔳 No
10. Do hunting, fishing or shell fishing opportunities prese	ntly exist in the project area? □ Yes ■ No
□ Yes ■ No According to Site Visit	al life that is identified as threatened or endangered? TBD s- to be confirmed by NYS Office of Environmental Conservation on Services
Identify each species	
12. Are there any unique or unusual land forms on the pro ☐ Yes ■ No Describe	oject site? (i.e., cliffs, dunes, other geological formations.)
 13. Is the project site presently used by the community or □ Yes ■ No If yes, explain 	neighborhood as an open space or recreational area?
14. Does the present site include scenic views known to t ■ Yes □ No From adjoining residential lots	
15. Streams within or contiguous to project area:	Middle Branch Croton River
a. Name of Stream and name of River to which it is tri	butary
Middle Branch Croton River is tributary to the La	ke Carmel.
 16. Lakes, ponds, wetland areas within or contiguous to p a. Name <u>NA</u> 17. Is the site served by existing public utilities? <u>NA</u> a) If Yes, does sufficient capacity exist to allow conner b) If Yes, will improvements be necessary to allow con 	b. Size (In acres) /es □ No ction? ■ Yes □ No
 Is the site located in an agricultural district certified pu Section 303 and 304? □ Yes ■ No 	rsuant to Agriculture and Markets law, Article 25-AA,
ECL, and 6 NYCRR 617? 🛛 Yes 🔳 No	ritical Environmental Area designated pursuant to Article 8 of the
20. Has the site ever been used for the disposal of solid of	or hazardous wastes? 🛛 Yes 🔳 No
	oroject sponsor 90.5 acres. acres initially; 60.5 acres ultimately. Acres (see narrative Attachment A). (if appropriate)
h. If residential: Number and type of housing units:	
۲ One Family Initially	wo Family Multiple Family Condominium
Ultimately	
i. Dimensions (in feet) of largest proposed structure	<35 height; 360 width; 445 length.
j. Linear feet of frontage along a public thoroughfare proje	j
2. How much natural material (i.e. rock, earth, etc.) will be	e removed from the site? _0 tons/cubic yards?

 3. Will disturbed areas be reclaimed? Yes □ No □ N/A a. If yes, for what intended purpose is the site being reclaimed? Proposed building, Landscaping and Stormwater facilities b. Will topsoil be stockpiled for reclamation? ■ Yes □ No c. Will upper subsoil be stockpiled for reclamation? ■ Yes □ No
4. How many acres of vegetation (trees, shrubs, ground covers) will be removed from site? 59.5 acres.
 5. Will any mature forest (over 100 years old) or other locally important vegetation be removed by this project? □ Yes ■ No
6. If single-phase project: Anticipated period of construction? 24 Months, (including demolition).
7. If multi-phased:
a. Total number of phases anticipated? (number).
b. Anticipated date of commencement phase 1 Month Year, (including demolition)
c. Approximate completion date of final phase Month Year. d. Is phase 1 functionally dependent on subsequent phases? □ Yes □ No
8. Will blasting occur during construction? ■ Yes □ No
9. Number of jobs generated during construction? 307 After project is complete <u>1028</u>
10. Number of jobs eliminated by this project? 0
11. Will project require relocation of any projects or facilities?? □ Yes ■ No
If yes, explain
 12. Is surface liquid waste disposal involved? Yes O No TBD- both options to be investigated a. If yes, indicate type of waste (sewage, industrial, etc.) and amount. Sewage- 15,675 gpd b. Name of water body into which effluent will be discharged.
13. Is subsurface liquid waste disposal involved? 🛛 Yes 🔳 No TBD- both options to be investigated
14. Will surface area of an existing water body increase or decrease by proposal? □ Yes ■ No Explain
15. Is project or any portion of project located in 100-year flood plain? □ Yes ■ No
16. Will the project generate solid waste? ■ Yes □ No
a. If yes, what is the amount per month 32 Tons
b. If yes, will an existing solid waste facility be used? ■ Yes □ No
c. If yes, give name RESCO ;Location Peekskill, NY
d. Will any wastes not go into a sewage disposal system or into a sanitary landfill? ■ Yes □ No e. If yes, explain
 17. Will the project involve the disposal of solid waste? □ Yes ■ No a. If yes, what is the anticipated rate of disposal? Tons/month. b. If yes, what is the anticipated site life? Years.
18. Will project use herbicides or pesticides? □ Yes ■ No
19. Will project routinely produce odors (more than one hour per day?) □ Yes ■ No
20. Will project produce operating noise exceeding the local ambient noise levels?
21. Will project result in an increase in energy use? ■ Yes □ No
If yes, indicate type(s)
22. If water supply is from wells, indicate pumping capacity TBD Gallons/minute.
23. Total anticipated water usage per day 15,675 gallons/day.
24. Does project involve Local, State or Federal funding? □ Yes ■ No If yes, explain

25.	Approvals	Required:
-----	-----------	-----------

			Туре	Submittal Date				
City, Town, Village Board	Yes	🗆 No	Possible Town Board for Transp. Corp.	Duto				
City, Town, Village Planning Board	Yes	□ No	Site Plan, Special Use Permit,), Steep Slope, Wetland, Signs Permit, Site Plan,					
City, Town Zoning Board	Yes	🗆 No	Fence Variance (Patterson/Kent)					
City, County Health Department	Yes	🗆 No	Water supply, Sewage disposal					
Other Local Agencies	🗆 Yes	No No						
Other Regional Agencies	Yes	🗆 No	NYC DEP SPPP, Sewer approval, County Highway					
State Agencies	Yes	🗆 No	NYS DEC SPDES					
			NYS DOT Highway Work Permit (Access road connection and offsite traffic improvements, if any)					
Federal Agencies C. Zoning and Planning Inform	■ Yes mation	□ No	Possible Army Corps of Engineers					
• •								
 Does proposed action involve a plann If yes, indicate decision required: ☐ Zoning amendment	ning variar	-		site plan				
2. What is the zoning classification(s) of the	ne site?	Industrial, R	Residential (R-4), Commercial					
3. What is the maximum potential develop	-							
4 single-family residences and 880								
4. What is the proposed zoning of the site								
		e site if devel	oped as permitted by the proposed zoning?					
NA								
6. Is the proposed action consistent with the recommended uses in adopted local land use plans? ■ Yes □ No								
7. What are the predominant land use(s)	7. What are the predominant land use(s) and zoning classifications within a ¼ mile radius of proposed action?							
Residential, Commercial and Indus	strial							
8. Is the proposed action compatible with	adjoining/s	surrounding la	and uses within a $\frac{1}{4}$ mile? \blacksquare Yes \Box No					
9. If the proposed action is the subdivision	n of land, h	now many lots	are proposed? NA					
a. What is the minimum lot size propo	sed?		· · ·					
10. Will proposed action require any auth	orization(s) for the forma	ation of sewer or water districts? \Box Yes \Box No	TBD				
 Will the proposed action create a dem ■ Yes □ No 	nand for ar	y community	provided services (recreation, education, police, ar	Id fire protection?				
12. Will the proposed action result in the	generation	of traffic sign	ificantly above present levels? ■ Yes □ No					
a. If yes, is the existing road network ade	quate to ha	andle the addi	itional traffic? 🛛 Yes 🗌 No TBD					
D. Informational Details								
Attach any additional information as	may be ne	eded to clarif	y your project. If there are or may be any adverse	impacts associated				
			hich you propose to mitigate or avoid them.					
E. Verification								
I certify that the information provided	above is tr	ue to the best	t of my knowledge.					
Applicant/Sponsor Name Patterson Co	rossing R	ealty, LLC	Date	6/30/04				
Signature	_		Title					
Signature	me	le	Planner for a	applicant				

Full Environmental Assessment Form Attachment A PROJECT DESCRIPTION Patterson Crossing

INTRODUCTION

The applicant proposes a proposed Retail Center on approximately 90.5 acres of undeveloped land of which 16.3 acres is zoned commercial in the Town of Kent and 74.1 acres is zoned residential and industrial in the Town of Patterson (see attached figures). This development project is called "Patterson Crossing". Most of the proposed development activity is within the Industrial zone of the Town of Patterson.

Site Location

The regional setting and site location are shown in the accompanying location map. The project site is located on New York State Route 311 near exit 18 of Interstate 84 in the Town of Patterson and Kent, Putnam County, New York. The municipal boundary bisects the site and all road frontage is within the Town of Kent

Description of the Project

The applicant is proposing a shopping center consisting of higher end retailers as listed in the table below. Total gross leasable area of these commercial uses is anticipated to be approximately 411,300 square feet in addition to 28,200 square feet of garden center. A reduced copy of the site plan is attached.

Table 1 Intensity of Use and Parking Requirements							
Building Square Foot Parking Spaces							
Cafe	3,000	,15					
Restaurant	7,000	35					
Retail	8,000	40					
Bed, Bath and Beyond	24,800	124					
Retail	15,400	77					
Best Buy	30,000	150					
Clothing or Sporting goods	51,200	256					
Lowe's, Garden Center	135,200, 28,200	676*					
Costco*	136,700	684					
Total	411,300	2057					
*Garden Center not included in parking calculation							
fuel station at Costco for members only.							

Access will be taken via a driveway connecting the site to Route 311. No buildings are proposed within the Kent portion of the site, although some accessory parking facilities are. No buildings are proposed within the residentially zoned portion of the Town of Patterson.

Patterson Crossing Retail Center EAF June 18, 2004

The proposed retail buildings have been sited on the far east side of the site and will be buffered from the interstate by a dense canopy of trees. The land abutting residential neighborhoods will be fenced and treated with landscaped buffers.

A preliminary stormwater management plan is proposed in accordance with New York City stormwater management requirements.

The site is served by electric and gas. Water and sewer service will provided by onsite facilities.

Of the 90.5 total acreage of the project site, approximately 30 acres will be conserved, 33.2 acres will consist of roads, buildings and other paved surfaces, and 25.8 acres will consist of landscaping and storm water management facilities.

Approvals Required

This proposed action will require approvals from the following agencies:

- Town of Patterson Board of Appeals, Special Use Permit, possible fence variance
- Town of Patterson Planning Board: Site Plan
- Town of Kent Planning Board: Steep Slope, Wetland, and Sign permit, Site Plan,
- Town of Kent Zoning Board: possible fence variance
- Putnam County Health Department: Water supply, sewage treatment facility
- New York City Dept of Environmental Protection: Stormwater Protection Plan and sewage treatment facility
- New York State Department of Environmental Conservation: SPDES permit
- NYSDOT Highway work permit

John L. Buono Chairman

Nancy E. Carey Board Member

John R. Riedman Board Member

Michael R. Fleischer Executive Director

New York Division 4 Executive Boulevard Suffern, NY 10901

www.thruway.state.ny.us

March 14, 2006

John T. Brizzell, P.E. Deputy Executive Director

Ramesh Mehta, PE **Division Director** Phone (845) 918-2500 Fax (845) 918-2594

Mr. Herb Schech, Chairman Mr. Richard Williams Sr., Planner Patterson Planning Board Town of Patterson 1142 Route 311 Patterson, NY 12563

RECEIVED

MAR 1 7 2006

T.O.P.

PLANNING & ZONING

RE: The Patterson Crossing I-84 MP 61.85 EB @ NYS Rt. 311

Dear Mssrs. Schech and Williams:

The Thruway Authority has obtained the Towns' Scope for а Draft Environmental Impact Statement for the above subject proposed project. We have no objections to the Town being Lead Agency and offer the following concerns the Authority, as an involved agency, will have with this project:

- 1) Traffic - A Traffic Impact Study will be needed in order to analyze the operation of the road system, including the I-84 Interchange 18 area. Capacity and queuing analyses will need to include the interchange ramps.
- 2) Drainage - You will find attached the Thruway Authority's criteria for Hydraulic Design of New Facilities and Developments Utilizing Thruway (I-84) Drainage.
- Signing Any signing adjacent to I-84 must meet the Thruway's 3) regulations for commercial signs adjacent to the I-84 property. Attached is a copy of the regulations. Please contact our Traffic Management (518-471-4453) office for any questions you may have.
- Lighting The Authority's design practice for non-lighted areas 4) of the highway requires that site lighting from new developments must not increase the foot-candle magnitude more than one tenth (0.1) foot-candle above the existing foot-candle magnitude at the outside edge of the outside travel lane of our roadway.

Mssrs. Schech and Williams March 14, 2006 Page 2 of 2

5) Fencing - A 6-ft. chain link fence needs to exist between the facility and the I-84 mainline.

Thank you for the opportunity to provide comments. Please forward two copies of any subsequent material to myself at the above address. Should you have any questions, please call me at 845-918-2510.

Very traly yours,

Dárrin J. Scalzo Division Permit Coordinator

DJS:an Attachments

cc: R. Mehta

HYDRAULIC DESIGN OF

NEW FACILITIES AND DEVELOPMENTS

IMPACTING THROWAY DRAINAGE

All projects that will alter stormwater runoff to New York State Thruway Authority lands shall be designed so that no increase in peak flows will occur. The criteria for this shall be the peak flows for 10, 25, and 50-year storms. Hydrologic and/or hydraulic computations shall be modeled using a method that is applicable to the size of the watershed involved. (Examples being the Rational Method, SCS TR-55 or TR-20 HEC-1, Dodson, Haestead).

In addition, any project down stream of Authority lands must not impede existing flows from the Thruway and be designed in such a manner as to accommodate the Thruway flows without flooding the project area.

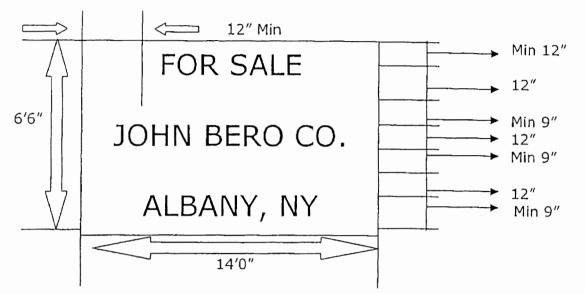
To obtain Thruway approval the following materials are required:

- Bocation map clearly showing project site, along with drainage basin schematic. All drainage basins must be clearly labeled.
- Contoured site/drainage plans for pre-and post-development including: flow direction arrows, Thruway structures affected, types of pipes, culverts or ditches, (with all pertinent dimensions, N-values, slopes and invert elevations).
- 3. Hydraulic computations and hydrographs for pre and postdevelopment conditions for above storms. Standard backup data required includes but is not limited to: typical detention basin cross-section, emergency spillway configuration, maximum water surface elevations/volumes for each storm and outlet details (type of pipe, N-values, inverts, length, slope, inlet/outlet treatment and velocities).

Note that detention basins/structures should be designed to contain the 100-year storm without overtopping.

- 4. A detailed narrative and summary sheet, specific to the impact on the Authority, is required. This narrative must include a discussion of pre-and post-development flows and exactly how these post-development flows will be held to pre-development levels. (This narrative must refer to specific pages in the drainage study.)
- A statement signed by a licensed engineer, certifying that postdevelopment peak flows will be at or below pre-development levels and there will be no detrimental effect on the Authority.

Throway approval does not relieve the developer from meeting all local, county, state and federal regulations governing erosion/sediment control and all other water guality standards that may apply.



3/2005

NEW YORK STATE THRUWAY AUTHORITY BUREAU OF TRAFFIC ENGINEERING

GENERAL GUIDELINES PERTAINING TO ADVERTISING DEVICES

- I. These guidelines supplement section 361-a of the Public Authorities Law and Part 105 of the Rules and Regulations of the Thruway Authority.
- II. All advertising devices subject to a permit should be evaluated with respect to the following guidelines:
 - A. Normally, a limit of one sign for an individual property owner or individual business facing each direction of traffic.
 - B. Allowance of an additional entrance sign for a motel, gas station, shopping center, etc. when necessary to identify such entrance from the local highway.
 - 1. The legend on an entrance sign should be limited to no more than four lines or twelve words of copy, including the name of the business.
 - 2. A list of the individual businesses is not allowed on the shopping center entrance sign.
 - C. A street address or telephone number is not permitted.
 - D. A sign should usually consist of two colors, one for the legend and a contrasting color for the background. If it will not cause unreasonable distraction, a symbol, logo or additional colors may be allowed.
 - E. Outdoor advertising signs, displays and devices which include the steady illumination of sign faces, panels or slats that rotate or change to different messages in a fixed position, commonly known and referred to as changeable or multiple message signs, provided the change of one sign face to another is not more frequent than once every six seconds and the actual change process is accomplished in three seconds or less.
 - F. The sign and legend should be large enough to be seen and read within a reasonable and appropriate time. It should not be so large as to cause an unreasonable distraction or violate the natural scenic beauty or aesthetic features at its location In general:
 - The sign should not exceed 200 square feet in area nor 30 feet in any one dimension. The top of a sign should not be more than 40 feet above the Thruway road surface adjacent to its location. A sign on a building will be considered in relation to the size of the building.
 - 2. A typical layout for a sign with 12 inch capital letters is shown below:

The width of the sign can be approximated by multiplying the number of letters and spaces, including edges spaces, by the height of the letter, in inches. The interline spacing should not be less and ¾ of the average of the heights of the capital or uppercase letters in adjacent lines of letters. The spacing to the top and bottom borders should be equal to the average of the letter height of the adjacent lines of letters. The lateral spacing to the vertical borders shall be essentially the same as the height of the largest letters.

- III. Some advertising devices may be excluded from a need for a permit.
 - A. An advertising device visible from a main roadway of the Thruway system may be excluded from a need for a permit when such device is:
 - Deemed incidental and not otherwise in non-conference with section 361-a of the Public Authorities Law or Part 105 of the Thruway's Rules and Regulations.
 - 2. Among a multitude of devices oriented toward local highways and not causing an unreasonable distraction to Thruway travelers.
 - B. An advertising device visible from an interchange roadway but not visible from a main roadway of the Thruway system may be excluded from permit requirement when such device is:
 - 1. Deemed incidental and not otherwise in non-conformance with section 361-a of the Public Authorities Law or Part 105 of the Thruway's Rules and Regulations.
 - 2. Among a multitude of devices oriented toward local highways and not causing an unreasonable distraction to Thruway travelers.

p.6

TAP-620

SECTION 361-A, PUBLIC AUTHORITIES LAW

(Chapter 593, Laws of 1952, effective April 10, 1952, as amended by Chapter 316, Laws of 1961, effective April 6, 1961)

§361-a. Restriction and regulation of advertising devices

- Except as otherwise provided in this section, the erection or maintenance of any advertising device located within six hundred sixty feet of the nearest edge of the right-of-way of the Thruway without a written permit therefore granted by the Authority pursuant to this section is prohibited.
- 2. The term "advertising device" as used in this section shall include any billboard, sign, notice, poster, display or other device intended to attract or which does attract the attention of operators of motor vehicles on the Thruway, and shall where so determined by the Authority, include a structure erected or used in connection with the display of any such device and all lighting or other attachments used in conjunction therewith.
- 3. The Authority may from time to time adopt, modify, amend or repeal regulations governing the issuance of permits or renewals thereof for the erection and maintenance of advertising devices. Such regulations shall be designed to effectuate the general purposes of this article and the specific objectives and standards hereinafter set forth:
 - a) To provide for maximum visibility along the Thruway system and connecting roads or highways;
 - b) To prevent unreasonable distraction of operators of motor vehicles;
 - c) To prevent confusion with regard to traffic lights, signs or signals or otherwise interfere with the effectiveness of traffic regulations;
 - d) To preserve and enhance the natural scenic beauty or the aesthetic features of the Thruway system and adjacent areas;
 - e) To promote maximum safety, comfort and well-being of the users of the Thruway.
- To effectuate the purposes of this section, the Authority may limit the application of any regulation adopted; hereunder to exclude or include, in whole or in part.
 - a) Specified areas of the Thruway system based upon use, population density, nature of the surrounding community, special conditions prevailing therein, or such other factors as

may make differentiation or separate classification or regulation necessary, proper or desirable;

- b) Particular types of classes of advertising devices based upon size, design, lighting or such other factors as may make differentiation or separate classification or regulation necessary, proper or desirable;
- c) The erection or maintenance of advertising devices on particular sections or portions.
- 5. Application for permits or renewals thereof shall be on forms prescribed by the Authority and shall contain such information as the Authority may require. A fee of ten dollars with respect to each advertising device shall be paid to the Authority with each initial application subject to a refund of one-half of this amount if the permit is not issued. Each permit shall be valid for a period not in excess of one year and may be renewed from time to time for such periods within thirty days of the expiration date thereof upon payment to the Authority of a fee of five dollars.
- 6. The permit or renewal thereof shall be revocable at any time on thirty days notice to the permittee in the event of a violation of the requirements of this section or any regulation lawfully adopted hereunder. Any advertising device erected or maintained after September first, nineteen hundred fifty-two in violation of this section of any regulation adopted hereunder is hereby declared to be, and is, a public nuisance and such device may be without notice be abated and removed by any officer or employee of the Authority, or upon request of the Authority, by any peace officer.
- 7. The Authority by regulation may exclude from the coverage of this section advertising devices which it finds do not interfere with safety on the Thruway system or contravene any of the other standards set forth in this section, including but not limited to:
 - a) Advertising devices which are to be erected or maintained on property for the purpose of setting forth or indicating
 - 1. The name and address of the owner, lessee or occupant of such property, or
 - 2. The name or type of business or profession conducted on such property, or
 - 3. Information required or authorized by law to be posted or displayed thereon.
 - b) Advertising devices which are not visible from any traveled portion of the Thruway system;
 - c) Advertising devices indicating the sale or leasing of the property upon which they are placed;
 - d) Directional or other official signs and signals erected or maintained by the state or other public agency having jurisdiction.

p.8

- 8. Nothing in this section shall apply with respect to any property which is owned or leased by the State of New York or any agency thereof or with respect to which the State of New York or any agency thereof has or shall have a valid easement or covenant with the owner thereof concerning the restriction, removal or prohibition of advertising devices.
- 9. Nothing in this section shall be construed to abrogate or affect the provisions of any municipal ordinance, regulation or resolution which are more restrictive concerning advertising devices than the provisions of this section or of the regulations adopted hereunder.
- 10. Pending the assumption of jurisdiction over any section or connection of the Thruway system by the Authority, the superintendent shall have all powers and duties with respect thereto conferred upon the Authority by this section.

Part 105. ADVERTISING DEVICES

105.1 Statutory Reference

The erection or maintenance of any advertising device, located within 660 feet of the nearest edge of the right-of-way of the Thruway is prohibited pursuant to section 361-a of the Public Authorities Law.

105.2 Definitions

For the purposes of this Part, the following definitions shall apply:

- A. Advertising device shall include any billboard, sign, notice, poster, display or other device intended to attract or which does attract the attention of operators of motor vehicles on the Thruway, and shall include a structure erected or used in connection with the display of any such device and all lighting or other attachments used in conjunction therewith.
- B. Off-premises device shall include an advertising device displaying a message pertaining to a business or service not conducted or provided on the property on which the device is located.
- 105.3 Prohibited advertising devices
 - A. The following are prohibited:
 - 1. Advertising devices which advertise activities that are illegal under Federal, State or municipal laws or regulation;
 - 2. Obsolete advertising devices;
 - 3. Advertising devices not securely affixed in place;
 - 4. Advertising devices which purport to be or are imitations of or resemble or are likely to be construed as official traffic control devices or railroad signs or signals, or which attempted to direct or regulate the movement of traffic, or which hide from view or interfere with the effectiveness of any official traffic control device or any railroad sign or signal;
 - 5. Advertising devices which prevent the driver of a vehicle from having a clear and unobstructed view;
 - Advertising devices which contain, include or are illuminated by any flashing, intermittent or moving light or lights;
 - Advertising devices which permit beams or rays of light to be directed at any portion of the Thruway system, or

p.11

which cause glare and tend to interfere with any driver's operation of a vehicle on the Thruway system;

- 8. Advertising devices which move or have any animated or moving parts;
- Advertising devices on trees, rocks or other natural features;
- 10. Advertising devices which, based on established policy or in the judgment of the Thruway Authority, constitute a traffic hazard; and
- 11. Off-premises devices, except that the following offpremises devices may be permitted under this Part: devices located in areas within 660 feet of the nearest edge of the right-of-way which are zoned industrial or commercial under authority of State law and which lie within the boundaries of cities having a population greater than 250,000, provided that no off-premises advertising device shall be permitted to be maintained within 660 feel of the nearest edge of the Niagara section right-of-way within the city of Buffalo north to Elm Street.
- B. Whenever an off-premises advertising device prohibited under subdivision (a) of this section, but lawful under prior law, is located in areas within 660 feet of the nearest edge of the rightof-way of Interstates 84 or 287, and construction of same at its present location commenced with respect to Interstate 85 on or before September 1, 1992 and with respect to Interstate 287 on or before April 1, 1991, the same may continue to be maintained. subject to permitting under the Part, for a reasonable period not to exceed the longer of two years from commencement of construction or the period which the owner of the advertising device can demonstrate is necessary to avoid substantial financial loss. In determining what constitutes substantial financial loss, the Authority may consider such factors as initial capital investment, investment realization at the time of the permit application, life expectancy of the investment, the existence or non-existence of a lease obligation, and existence of a contingency clause permitting termination of the lease. Failure to apply for a permit under this Part shall constitute presumptive evidence that immediate removal of the off-premises advertising device will cause no substantial economic loss.

105.4 Exclusions

A. Excluded from these regulations are:

- 1. Advertising devices which are not visible from any traveled portion of the Thruway system;
- 2. Advertising devices for which the attraction is deemed incidental by the Thruway Authority;
- 3. Directional or other official signs and signals erected or maintained by the State or other public agency having jurisdiction; and
- 4. Information required or authorized by law to be posted or displayed thereon.

105.5 Permits

Application for a permit or renewal thereof for each separate advertising device shall be on forms adopted by the Thruway Authority and shall contain such information as the Thruway Authority may require.

105.6 Restrictions as to Thruway lands

Notwithstanding the purpose for which it may be erected or the persons to whom it may be visible, no advertising device shall be erected or maintained on lands under the jurisdiction of the Thruway Authority except devices by the Thruway Authority or with the consent of the Thruway Authority.

Appendix B

CORRESPONDENCE

Appendix B - List of Contacts

New York State Department of Environmental Conservation Division of Fish, Wildlife & Marine Resources New York Natural Heritage Program - Letter Follows.

New York State Department of Environmental Conservation, Region 3 Ron Pierce - Telephone Conversation on 5/09/05.

New York State Office of Parks, Recreation and Historic Preservation - Letter Follows.

New York State Department of Transportation Angela Aiello - Letter Follows.

New York City Department of Environmental Protection - Letter Follows.

Putnam County Office of the Sheriff Chief Donald B. Smith - Letter Follows.

Putnam County Bureau of Emergency Services Adam Stiebling, Deputy Commissioner - Telephone Conversation on 2/22/05.

Putnam County Department of Health Michael Budzinski, P.E., Director of Engineering - Letter Follows.

Town of Kent Police Department Chief Donald L. Smith - Letter Follows.

Patterson Fire Dept. No. 1, Inc. Chief Frank Smith - Telephone Conversation on 2/20/04.

Patterson Fire Dept. No. 1, Inc. Brian M. Burdick, President - Letter Follows.

Connecticut Test Borings, LLC Chris D'Angelis - Soil Borings - See Appendix D.

JG-filp

STATE OF NEW YORK DEPARTMENT OF TRANSPORTATION ELEANOR ROOSEVELT STATE OFFICE BUILDING **4 BURNETT BOULEVARD** POUGHKEEPSIE, N.Y. 12603-2594

ROBERT A. DENNISON III, P.E. **REGIONAL DIRECTOR**

JOSEPH H. BOARDMAN COMMISSIONER

June 15, 2005

James Garofalo Tim Miller Associates, Inc. 10 North Street Cold Spring, NY 10516

RE: Freedom of Information Law Request FR8-05-000048 **Accident Data** Fair Street, T/ Patterson Your File No. 04031

Dear Mr. Garofalo:

This correspondence is in reference to your May 24, 2005 Freedom of Information Law (FOIL) request and will acknowledge receipt of your check in the amount of \$50.00.

Transmitted herewith is the information you requested.

Thank you for your interest in our operations.

Sincerely, Angela K. Aiello

Administrative Services Director

AKA:jjr

Attachment

SHERLITA AMLER, MD, MS, FAAP Commissioner of Health

LORETTA MOLINARI, RN, MSN Associate Commissioner of Health

1 **ROBERT J. BONDI**

OBERT J. BONL County Executive

DEPARTMENT OF HEALTH 1 Geneva Road, Brewster, New York 10509

January 18, 2005

Tim Miller Associates Inc. Mr. Jon Dahlgren 10 North Street Cold Spring, New York 10516

> Re: Well Testing Plan for Patterson Crossing Town of Patterson

Dear Mr. Dahlgren:

This Department has received and reviewed the revised well testing program for the above referenced project. The revised well testing plan has been determined to be acceptable to this Department.

Kindly advise this office if there are any questions.

Respectfully, Regendi Michael J. Budzin

Director of Engineering

MJB:cw Cc: P. Camarda

New York State Department of Environmental Conservation Division of Fish, Wildlife & Marine Resources

New York Natural Heritage Program 625 Broadway, 5th floor, Albany, New York 12233-4757 Phone: (518) 402-8935 • FAX: (518) 402-8925 Website: www.dec.state.ny.us

- In - de

January 17, 2005

Andrew Mavian Tim Miller Associates, Inc 10 North St Cold Spring, NY 10516

COPY

Dear Mr. Mavian:

In response to your recent request, we have reviewed the New York Natural Heritage Program databases with respect to an Environmental Assessment for the proposed Patterson Crossing Retail Center, site as indicated on the map you provided, located on Rte 311, Town of Patterson and Kent, Putnam County.

We have no records of <u>known</u> occurrences of rare or state-listed animals or plants, significant natural communities, or other significant habitats, on or in the immediate vicinity of your site.

The absence of data does not necessarily mean that rare or state-listed species, natural communities or other significant habitats do not exist on or adjacent to the proposed site. Rather, our files currently do not contain any information which indicates their presence. For most sites, comprehensive field surveys have not been conducted. For these reasons, we cannot provide a definitive statement on the presence or absence of rare or state-listed species, or of significant natural communities. This information should not be substituted for on-site surveys that may be required for environmental assessment.

Our databases are continually growing as records are added and updated. If this proposed project is still under development one year from now, we recommend that you contact us again so that we may update this response with the most current information.

This response applies only to known occurrences of rare or state-listed animals and plants, significant natural communities and other significant habitats maintained in the Natural Heritage Data bases. Your project may require additional review or permits; for information regarding other permits that may be required under state law for regulated areas or activities (e.g., regulated wetlands), please contact the appropriate NYS DEC Regional Office, Division of Environmental Permits, at the enclosed address.

Sincerely. bo TT

Betty A. Hetcham, Information Services New York Natural Heritage Program

Enc. cc: Reg. 3, Wildlife Mgr.

REGION	COUNTIES	REGIONAL PERMIT ADMINISTRATORS
1	Nassau & Suffolk	John Pavacic NYS-DEC
		BLDG. 40 SUNIX at Starry Break
		SUNY at Stony Brook Stony Brook, NY 11790-2356
		Telephone: (631) 444-0365
2	New York City (Boroughs of Manhattan, Brooklyn, Bronx,	John Cryan
~	Queens, & Staten Island	NYS-DEC
		One Hunters Point Plaza
		47-40 21st Street
	•	Long Island City, NY 11101-5407
		Telephone: (718) 482-4997
3	Dutchess, Orange, Putnam, Rockland, Sullivan, Ulster &	Margaret Duke
	Westchester	NYS-DEC
		21 South Putt Corners Road
		New Paltz, NY 12561-1696
4	Alberty Columbia Course Mantana Durantan C	Telephone: (845) 256-3054 William Clarke
4	Albany, Columbia, Greene, Montgomery, Rensselaer & Schenectady	William Clarke NYS-DEC
	Schenectady	1150 North Wescott Road
		Schenectady, NY 12306-2014
		Telephone: (518) 357-2069
4	Delaware, Otsego & Schoharie	Kent Sanders
(sub-office)		NYS-DEC
		Route 10
		HCR#1, Box 3A
		Stamford, NY 12167-9503
		Telephone: (607) 652-7741
5	Clinton, Essex, Franklin & Hamilton	Thomas Hall
		NYS-DEC
		Route 86, PO Box 296
		Ray Brook, NY 12977-0296 Telephone: (518) 897-1234
5	Fulton, Saratoga, Warren & Washington	Thomas Hall
(sub-office)	i unon, salatoga, marten & masilington	NYS-DEC
(sub office)		County Route 40
		PO Box 220
		Warrensburg, NY 12885-0220
		Telephone: (518) 623-1281
6	Jefferson, Lewis & St. Lawrence	Brian Fenlon
		NYS-DEC
		State Office Building
	· · ·	317 Washington Street
		Watertown, NY 13601-3787
(Telephone: (315) 785-2245
6 (sub affina)	Herkimer & Oneida	J. Joseph Homburger*
(sub-office)		NYS-DEC
		State Office Building 207 Genesee Street
		Utica, NY 13501-2885
		HDC3 NY HSDL-2885

7	Cayuga, Madison, Onondaga & Oswego	John Feltman NYS-DEC 615 Erie Blvd. West
	· .	(Env.Permits Room 206) Syracuse, NY 13204-2400 Telephone: (315) 426-7438
7 (sub-office)	Broome, Chenango, Cortland, Tioga & Thompkins	Michael Barylski* NYS-DEC 1285 Fisher Avenue Cortland, NY 13045-1090 Telephone: (607) 753-3095
8	Chemung, Genesee, Livingston, Monroe, Ontario, Orleans, Schuyler, Seneca, Steuben, Wayne & Yates	Peter Lent NYS-DEC 6274 East Avon Lima Road Avon, NY 14414-9519 Telephone: (716) 226-2466
9	Erie, Niagara & Wyoming	Steve Doleski NYS-DEC 270 Michigan Avenue Buffalo, NY 14203-2999 Telephone: (716) 851-7165
9 (sub-office)	Allegany, Cattaraugus, Chautauqua	Ken Taft* NYS-DEC 182 East Union, Suite 3 Allegany, NY 14706-1328 Telephone: (716) 372-0645

,

* Deputy Regional Permit Administrator

•

71 - HCo

DONALD B. SMITH Brigadier General, U.S. Army (Ret.) SHERIFF (845) 225 - 3000 PUTNAM COUNTY OFFICE OF THE SHERIFF THREE COUNTY CENTER CARMEL, NEW YORK 10512

PETER H. CONVERY UNDERSHERIFF (845) 225 - 1460

October 22, 2004

Ms. Janell Herring Senior Planner Tim Miller Associates, Inc. 10 North Street Cold Spring, NY 10516

Re: Proposed Patterson Crossing, Towns of Patterson and Kent

Dear Ms. Herring:

This is in response to your letter, dated October 6, 2004, regarding the proposed Patterson Crossing in the Towns of Patterson and Kent. In your letter, you requested information on the ability of the Sheriff's Department to provide police protection services to this project. I hope the information listed below is of use in your Environmental Impact Study

- The Putnam County Sheriff's Department, along with the New York State Police, provides primary police services to the Town of Patterson.
- The Town of Kent Police Department provides primary police services within the Town of Kent.
- The Sheriff's Department has a minimum of one patrol assigned to the Patterson area 24 hours a day. The closest car concept is utilized in response to 911 emergency calls; either the Putnam County Sheriff's patrol unit, the New York State Police patrol unit, or the Kent Patrol Unit would be dispatched.
- The Putnam County Sheriff's Department service ratio is one deputy sheriff per 1200 persons.

Ms. Herring October 22, 2004 Page 2

- The Kent Police station is located approximately 1.5 miles from the proposed site on Route 52 in the Town of Kent.
- The Putnam County Sheriff's Department headquarters is located approximately 4 miles from the proposed site at 3 County Center, Carmel, NY.
- The Putnam County Sheriff's Department has a total of 83 sworn officers.
- The Putnam County Sheriff's Department responds to approximately 32,000 33,000 calls for service per year.
- We do not anticipate a significant impact to the Putnam County Sheriff's Department in providing police protection specifically attributed to the proposed Patterson Crossing project. However, with Putnam County being one of the fastest growing counties in New York State, the collective impact of many new developments on law enforcement would most certainly require more law enforcement resources in future years.

I hope the above information is helpful to your project. Should you need any additional information, please do not hesitate to contact me or Captain William H. Schallock, who heads our Road Patrol Division, at (845) 225-7505.

Sincerely,

 \bigcirc Donald B. Smith Sheriff

DBS/lal

TULICE DEFACINENT

JH-file

Town of Kent 770 ROUTE 52, CARMEL, NEW YORK 10512

Address All Communications To Chief of Police Donald L. Smith, Jr.

Emergency - (845) 225 - 4600 Office - (845) 225 - 5646 Fax - (845) 225 - 7659

October 14, 2004

Ms. Janell Herring Senior Planner Tim Miller Associates, Inc. 10 North Street Cold Spring, New York 10516

Dear Ms. Herring:

This letter is in response to your letter dated October 6, 2004 regarding the impact the proposed Patterson Crossing Retail Center project would have on my department as well as responses to the statistical data you have requested.

EN

The Town of Kent Police Department is comprised of 26 full time employees, 21 sworn and 5 civilian. The department responds to approximately 10,000 calls a year. At any given shift there are a minimum of (2) two officers on patrol and a typical emergency response time is less than (3) minutes. The ratio of police officers to population served is roughly 1.4 , 1000. The construction of our new police facility is scheduled to be complete in Fall of this year. The station will be located on Route 52 approximately 1 ½ miles from the proposed project. There are no immediate plans nor do we anticipate in the near future an increase in manpower.

Although most of the project will be located in the Town of Patterson, there are some serious concerns I have that may potentially impact my *department*. The first concern is the amount of traffic this project will generate. According to the map, it appears the proposed entrance will be located in the Town of Kent and therefor all of the project's traffic will pass through our town at one point or another increasing the possibility of traffic crashes, not only at the project site, but also around the ancillary intersections along Route 311 and along Route 52. The traffic along these highways is already congested and any further increase without roadway redesign would cause, in my opinion, severe impact.

As far as other types of law enforcement response not associated directly to traffic, it would be difficult to determine at this time the impact this project would have on my department.

If I can be of further assistance to you, please do not hesitate to contact me.

Sincerely,

Donald L. Smith Jr. Chief of Police

> Serving Our Community 24 Hours A Day www.kentpolice.com

B. - file - PCzmarda MN J. (ontelmo

New York State Office of Parks, Recreation and Historic Preservation Historic Preservation Field Services Bureau Peebles Island, PO Box 189, Waterford, New York 12188-0189

518-237-8643

June 29, 2004

SEQRA

Manish Nainwal Tim Miller Associates 10 North Street Cold Spring, New York 10516

Re:

Patterson Crossing Retail Center I-84 and NY 311 Kent/Patterson, Putnam County 04PR03000

Dear Mr. Nainwal:

Thank you for requesting the comments of the Office of Parks, Recreation and Historic Preservation (OPRHP) concerning your project's potential impact/effect upon historic and/or prehistoric cultural resources. Our staff has reviewed the documentation that you provided on your project. Preliminary comments and/or requests for additional information are noted on separate enclosures accompanying this letter. A determination of impact/effect will be provided only after ALL documentation requirements noted on any enclosures have been met. Any questions concerning our preliminary comments and/or requests for additional information should be directed to the appropriate staff person identified on each enclosure.

In cases where a state agency is involved in this undertaking, it is appropriate for that agency to determine whether consultation should take place with OPRHP under Section 14.09 of the New York State Parks, Recreation and Historic Preservation Law. In addition, if there is any federal agency involvement, Advisory Council on Historic Preservation's regulations, "Protection of Historic and Cultural Properties" 36 CFR 800 requires that agency to initiate Section 106 consultation with the State Historic Preservation Officer (SHPO).

When responding, please be sure to refer to the OPRHP Project Review (PR) number noted above.

Sincerely,

Ruth &. Ruport

Ruth L. Pierpont Director

RLP:bsa

BUILDINGS/STRUCTURES/DISTRICTS EVALUATION COMMENTS

PROJECT NUMBER 04PR03000

(Patterson Crossing Retail Center/I-84 and NY 311/T/KENT /T/PATTERSON)

- Based upon a review of the information submitted and the scope of the project described, the NYS Office of Parks, Recreation and Historic Preservation has no concerns regarding historic buildings/structures/ districts within your project area.
- The following State/National Registers of Historic Places listed/eligible property/district is located within or adjacent to your project area. However, given the scope of the project, the NYS Office of Parks, Recreation and Historic Preservation has no concerns regarding historic buildings/structures/districts within your project area.

* Archaeology comments will be provided in a separate attachment.

If you have any questions concerning this information, please call Peter Shaver at 518-237-8643. ext 3264

PLEASE BE SURE TO REFER TO THE PROJECT NUMBER NOTED ABOVE WHEN RESPONDING TO THIS REQUEST

ARCHEOLOGY COMMENTS 04PR03000

Based on reported resources, there is an archeological site in or adjacent to your project area. Therefore the Office of Parks, Recreation and Historic Preservation (OPRHP) recommends that a Phase 1 archeological survey is warranted for all portions of the project to involve ground disturbance, unless substantial prior ground disturbance can be documented. If you consider the project area to be disturbed, documentation of the disturbance will need to be reviewed by OPRHP. Examples of disturbance include mining activities and multiple episodes of building construction and demolition.

A Phase 1 survey is designed to determine the presence or absence of archeological sites or other cultural resources in the project's area of potential effect. The Phase 1 survey is divided into two progressive units of study including a Phase 1A sensitivity assessment and initial project area field inspection, and a Phase 1B subsurface testing program for the project area. The OPRHP can provide standards for conducting cultural resource investigations upon request. Cultural resource surveys and survey reports that meet these standards will be accepted and approved by the OPRHP.

Our office does not conduct cultural resources surveys. A 36 CFR 61 qualified archeologist should be retained to conduct the Phase 1 survey. Many archeological consulting firms advertise their availability in the yellow pages. The services of qualified archeologists can also be obtained by contacting local, regional, or statewide professional archeological organizations. Phase 1 surveys can be expected to vary in cost per mile of right-of-way or by the number of acres impacted. We encourage you to contact a number of consulting firms and compare examples of each firm's work to obtain the best product.

Documentation of ground disturbance should include a description of the disturbance with confirming evidence. Confirmation can include current photographs and/or older photographs of the project area which illustrate the disturbance (approximately keyed to a project area map), past maps or site plans that accurately record previous disturbances, or current soil borings that verify past disruptions to the land. Agricultural activity is not considered to be substantial ground disturbance and many sites have been identified in previously cultivated land.

Please also be aware that a Section 233 permit from the New York State Education Department (SED) may be necessary before any archeological survey activities are conducted on State-owned land. If any portion of the project includes the lands of New York State you should contact the SED before initiating survey activities. The SED contact is Christina B. Rieth and she can be reached at (518) 402-5975. Section 233 permits are not required for projects on private lands.

If you have any questions concerning archeology, please contact Michael Schifferli at 518-237-8643. ext 3281

PATTERSON FIRE DEPT. NO. 1, INC.

Box 334 Patterson, New York 12563 845-878-6047 www.pattersonfiredept.com

September 30, 2005

Mr. Paul Camarda & Mr. Mathew Bondi.

Please be advised that the Patterson Vol. Fire Dept is the responsible Fire Dept to provide the Fire and Emergency Medical Services for the Patterson Crossing project on Route 311 in the Town of Patterson.

The Patterson Fire Dept. is a dedicated Volunteer Fire Dept. ready willing and able to provide the necessary protection for all areas within our fire district.

As we have discussed in the past, the Patterson Crossing Project will be constructed under the guidance of the New York State Building and Fire Codes with the required fire separations and fire protection systems in place. The Patterson Fire Department, Officers and it's Members support this project.

Thank you Paul P. Piazza

Brian M. Burdick

Chief Patterson Fire Dept.

President, Patterson F.D.

Department of Environmental Protection

71 Smith Avenue Kingston, New York 12401

Tel (845) 340-7532 Fax (845) 340-7504

Emily Lloyd Commissioner

Tel. (718) 595-6565 Fax (718) 595-3557

Bureau of Water Supply

Michael A. Principe, Ph.D. Deputy Commissioner

Tei (\$14) 742-2001 Fe 1) 741-0348

TO: Charles Cutietta-Olson, Director, WQIA

FROM: Kelly Seelbach, Upstate DWQC Data Coordinator

SUBJECT: Requested Data

Request Number: 005-11

Requested By: Andrew Mavian Tim Miller Associates, Inc. 10 North Street Cold Spring, NY 10516

Data Requested: An Excel file of conductivity, total phosphorus, total nitrogen, D.O., chloride, pH, and turbidity from EBCR4 and MIDBR8, 1998 – 2001 and a printout of the maximum, minimum, and mean values of each analyte for each site.

Date Needed By: April 22, 2005

Date Request Received: April 5, 2005

Date Request Completed: April 20, 2005

Reason for Request: For description of baseline conditions for DEIS of proposed "Patterson Crossing" retail development at Route 311 and I-84 interchange.

Enclosed please find a diskette containing the information requested by Mr. Mavian. Also included are a contents procedure for the dataset, the printout, a laboratory methods table, a comments table, data entry code sheets, and a key to sampling locations. The data have been exported from SAS to an Excel spreadsheet. All data have been checked and corrected. If there are any questions regarding the information he will need to speak with David Robinson, Director, Kensico Laboratory, 19 West Lake Drive, Valhalla, NY 10595, 914-287-7156 or the East of Hudson District hydrologist.

This request contains 18 pages and 1 Excel file.

Enc. KCS:kcs xc:D. Smith (w/o enc.) A. Bader (w/o enc.) D. Robinson (w/o enc.) D. Borchert (w/o enc.)

L. Emery (w/o enc.) J. Mayfield (w/o enc.) A. Mavian (w/o enc.) file

Appendix C RETAIL MARKET DATA (CLARITAS DATA)

Prepared For: Tim Miller Assoc.

Project Code: 1492188-1

Order #: 963277662

Site: 01

SIC		Total	Total	Sales	Establishments
Code	Business Description	Establishments	Employees	(in Millions)	20+ Employees
RET	All Retailing	66	405	41.5	2
52	Building Materials, Garden Supply and Mobile Homes	6	57	7.7	1
521	Lumber and Other Building Materials	3	48	6.1	1
523	Paint, Glass and Wallpaper	1	2	.4	0
525	Hardware Stores	1	2	.3	0
526	Retail Nurseries and Garden	1	5	.9	0
527	Mobile Home Dealers	. 0	0	.0	0
53	General Merchandise Stores	1	10	.8	0
531	Department Stores	0	0	.0	0
54	Food Stores	3	19	3.1	0
541	Grocery Stores	2	18	3.0	0
542	Meat and Fish Markets	0	0	.0	0
543	Fruit and Vegetable Markets	0	0	.0	0
544	Candy, Nut and Confection Store	0	0	.0	0
545	Dairy Products Stores	0	0	.0	0
546	Retail Bakeries	1	1	.1	0
549	Miscellaneous Food Stores	0	0	.0	0
55	Automobile Dealers and Gas Service Stations	4	8	1.5	0
551	New and Used Car Dealers	0	0	.0	0
552	Used Car Dealers	1	1	.2	0
553	Auto and Home Supply Stores	1	1	.2	0
554	Gasoline Service Stations	2	6	1.1	0
555	Boat Dealers	0	0	.0	0
556	Recreational Vehicle Dealer	0	0	.0	0
557	Motorcycle Dealers	0	0	.0	0
559	Automotive Dealers, NEC	, 0	0	.0	0
56	Apparel and Accessory Stores	1	2	.1	0
561	Mens and Boys Clothing Stores	0	0	.0	0
562	Womens Clothing Stores	0	0	.0	0
563	Womens Accessory and Specialty Stores	1	2	.1	0
564	Childrens and Infants Wear	0	0	.0	0
565	Family Clothing Stores	0	0	.0	0
566	Shoe Stores	0	0	.0	0
569	Miscellaneous Apparel and Accessory Stores	0	0	.0	0
57	Home Furniture, Furnishings and Equipment	11	53	11.3	0
571	Home Furniture and Furnishing	3	22	3.9	0
5712	Furniture and Kitchen Design Stores	0	0	.0	0

WOODSTOCK RD. & CONCORD RD. CARMEL, NY, 0.00-3.00 Miles, Total

Page 1 of 7

CLARITAS © 2005 CLARITAS INC. All rights reserved. 1 800 866 6511

Prepared For: Tim Miller Assoc.

Project Code: 1492188-1

Order #: 963277662 Site: 01

SIC		Total	Total	Sales	Establishments
Code	Business Description	Establishments	Employees	(in Millions)	20+ Employees
5713	Floor Covering Stores	1	18	3.6	0
5719	Miscellaneous Home Furnishing Stores	2	4	.3	0
572	Household Appliance Stores	1	1	.2	0
573	Radio, TV and Computer Store	7	30	7.2	0
5731	Radio, TV, Electronic Stores	1	3	.5	0
5734	Computer Hardware and Software Stores	4	20	5.6	0
5735	Music, Video CD's and Tape Stores	2	7	1.1	0
58	Eating and Drinking Places	20	180	8.8	1
5812	Eating Places	20	180	8.8	1
5813	Drinking Places	0	0	.0	0
59	Miscellaneous Retail	20	76	8.2	0
591	Drug Stores and Proprietary	1	11	1.4	0
592	Liquor Stores	4	12	1.0	0
593	Used Merchandise Stores	2	2	.2	0
5932A	Antique Stores	1	1	.1	0
594	Miscellaneous Shopping Goods Stores	6	25	1.3	0
5941	Sporting Goods, Bicycle and Gun Stores	4	22	1.1	0
5942	Book Stores	0	0	.0	0
5943	Stationery Stores	0	0	.0	0
5944	Jewelry Stores	0	0	.0	0
5945	Hobby, Toy and Game Shops	0	0	.0	0
5946	Camera and Photography Supply Stores	0	0	.0	0
5947	Gift, Novelty and Souvenir Shops	2	3	.2	0
5948	Luggage and Leather Goods Stores	0	0	.0	0
5949	Sewing, Needlework and Craft Stores	0	0	.0	0
596	NonStore Retailers	0	0	.0	0
5961	Catalog and Mail Order Houses	0	0	.0	0
598	Fuel and Ice Dealers	0	0	.0	0
599	Retail Stores, NEC	. 7	26	4.3	0
5992	Florists	1	3	.2	0
5993	Tobacco Stores and Stands	0	0	.0	0
5994	News Dealers and Newsstands	0	0	.0	0
5995	Optical Goods Stores	0	0	.0	0
5999	Miscellaneous Retail Stores NEC	6	23	4.1	0
5999M	Pet Shops	0	0	.0	0

WOODSTOCK RD. & CONCORD RD. CARMEL, NY. 0.00-3.00 Miles, Total

Prepared For: Tim Miller Assoc.

Project Code: 1492188-1

Order #: 963277662

Site: 01

SIC		Total	Total	Sales	Establishments
Code	Business Description	Establishments	Employees	(in Millions)	20+ Employees
RET	All Retailing	1,004	9,033	1,203.1	89
52	Building Materials, Garden Supply and Mobile Homes	82	1,304	182.8	13
521	Lumber and Other Building Materials	29	863	110.2	10
523	Paint, Glass and Wallpaper	13	43	7.8	0
525	Hardware Stores	8	196	25.8	1
526	Retail Nurseries and Garden	31	186	33.0	2
527	Mobile Home Dealers	1	16	6.0	0
53	General Merchandise Stores	16	279	27.3	3
531	Department Stores	6	201	22.4	2
54	Food Stores	85	1,271	208.7	12
541	Grocery Stores	40	995	173.7	9
542	Meat and Fish Markets	8	75	12.0	2
543	Fruit and Vegetable Markets	7	22	4.4	0
544	Candy, Nut and Confection Store	0	0	.0	0
545	Dairy Products Stores	0	0	.0	0
546	Retail Bakeries	12	93	3.2	1
549	Miscellaneous Food Stores	18	86	15.4	0
55	Automobile Dealers and Gas Service Stations	113	868	256.9	11
551	New and Used Car Dealers	13	425	171.7	11
552	Used Car Dealers	14	27	6.4	0
553	Auto and Home Supply Stores	27	161	28.7	0
554	Gasoline Service Stations	49	205	37.3	0
555	Boat Dealers	3	6	1.8	0
556 557	Recreational Vehicle Dealer Motorcycle Dealers	4	25	7.1	0
557 559	Automotive Dealers, NEC	2	18 1	3.6	0
339	Automotive Dealers, NEC	, ,	1	.3	0
56	Apparel and Accessory Stores	20	131	8.5	2
561	Mens and Boys Clothing Stores	2	9	1.3	0
562	Womens Clothing Stores	6	45	2.4	1
563	Womens Accessory and Specialty Stores	2	4	.2	0
564	Childrens and Infants Wear	0	0	.0	0
565 566	Family Clothing Stores	1	4	.2	0
566 569	Shoe Stores	3	11	1.4	0
209	Miscellaneous Apparel and Accessory Stores	6	58	3.0	1
57	Home Furniture, Furnishings and Equipment	141	1,143	215.6	7
571	Home Furniture and Furnishing	59	631	94.5	4
5712	Furniture and Kitchen Design Stores	22	464	74.2	4

WOODSTOCK RD. & CONCORD RD. CARMEL, NY, 0.00-10.00 Miles, Total

CLARITAS © 2005 CLARITAS INC. All rights reserved. 1 800 866 6511

Prepared on: January 12, 2005

Prepared For: Tim Miller Assoc.

Project Code: 1492188-1

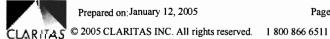
Order #: 963277662

Site: 01

SIC		Total	Total	Sales	Establishments
Code	Business Description	Establishments	Employees	(in Millions)	20+ Employees
5713	Floor Covering Stores	14	63	12.6	0
5719	Miscellaneous Home Furnishing Stores	19	95	7.2	0
572	Household Appliance Stores	15	52	9.4	0
573	Radio, TV and Computer Store	67	460	111.7	3
5731	Radio, TV, Electronic Stores	17	67	10.5	1
5734	Computer Hardware and Software Stores	32	329	91.0	2
5735	Music, Video CD's and Tape Stores	12	50	7.8	0
58	Eating and Drinking Places	263	2,557	128.2	30
5812	Eating Places	255	2,484	125.2	29
5813	Drinking Places	8	73	3.0	1
59	Miscellaneous Retail	284	1,480	175.1	11
591	Drug Stores and Proprietary	25	275	34.9	0
592	Liquor Stores	26	79	6.4	0
593	Used Merchandise Stores	24	155	10.5	3
5932A	Antique Stores	12	15	1.2	0
594	Miscellaneous Shopping Goods Stores	93	358	28.3	3
5941	Sporting Goods, Bicycle and Gun Stores	20	83	4.6	1
5942	Book Stores	6	16	.9	0
5943	Stationery Stores	8	57	10.2	1
5944	Jewelry Stores	9	59	3.2	1
5945	Hobby, Toy and Game Shops	5	10	.7	0
5946	Camera and Photography Supply Stores	0	0	.0	0
5947	Gift, Novelty and Souvenir Shops	39	118	7.8	0
5948	Luggage and Leather Goods Stores	0	0	.0	0
5949	Sewing, Needlework and Craft Stores	6	15	.9	0
596	NonStore Retailers	16	160	24.0	3
5961	Catalog and Mail Order Houses	3	29	5.8	1
598	Fuel and Ice Dealers	2	6	1.2	0
599	Retail Stores, NEC	· 98	447	69.8	2
5992	Florists	18	53	3.2	0
5993	Tobacco Stores and Stands	2	6	.4	0
5994	News Dealers and Newsstands	0	0	.0	0
5995	Optical Goods Stores	6	55	6.9	1
5999	Miscellaneous Retail Stores NEC	72	333	59.3	1
5999M	Pet Shops	13	75	13.3	1

WOODSTOCK RD. & CONCORD RD. CARMEL, NY, 0.00-10.00 Miles, Total

Prepared For: Tim Miller Assoc.


Project Code: 1492188-1

Order #: 963277662

Site: 01

SIC		Total	Total	Sales	Establishments
Code	Business Description	Establishments	Employees	(in Millions)	20+ Employees
RET	All Retailing	6,309	63,686	8,407.0	657
52	Building Materials, Garden Supply and Mobile Homes	424	6,724	938.8	67
521	Lumber and Other Building Materials	154	4,082	520.7	50
523	Paint, Glass and Wallpaper	95	444	79.2	2
525	Hardware Stores	45	1,237	166.5	7
526	Retail Nurseries and Garden	128	944	166.0	8
527	Mobile Home Dealers	2	17	6.4	0
53	General Merchandise Stores	119	5,301	578.9	48
531	Department Stores	67	4,999	555.6	47
54	Food Stores	501	7,366	1,180.7	56
541	Grocery Stores	246	5,924	1,005.8	47
542	Meat and Fish Markets	32	269	43.0	3
543	Fruit and Vegetable Markets	27	94	18.8	0
544	Candy, Nut and Confection Store	14	54	2.9	0
545	Dairy Products Stores	13	92	8.2	0
546	Retail Bakeries	78	451	16.5	4
549	Miscellaneous Food Stores	91	482	85.5	2
55	Automobile Dealers and Gas Service Stations	625	7,447	2,408.8	121
551	New and Used Car Dealers	128	4,620	1,866.2	105
552	Used Car Dealers	95	249	58.8	0
553	Auto and Home Supply Stores	141	1,250	217.4	10
554	Gasoline Service Stations	208	985	177.5	2
555	Boat Dealers	21	137	41.1	2
556	Recreational Vehicle Dealer	11	56	15.9	0
557	Motorcycle Dealers	14	115	23.0	2
559	Automotive Dealers, NEC	, 7	35	8.9	0
56	Apparel and Accessory Stores	346	2,761	204.1	25
561	Mens and Boys Clothing Stores	21	274	36.9	4
562	Womens Clothing Stores	103	742	44.8	4
563	Womens Accessory and Specialty Stores	21	193	10.3	3
564	Childrens and Infants Wear	21	230	12.0	2
565	Family Clothing Stores	55	560	29.7	6
566	Shoe Stores	52	334	42.5	1
569	Miscellaneous Apparel and Accessory Stores	73	428	27.9	5
57	Home Furniture, Furnishings and Equipment	819	5,727	1,048.7	35
571	Home Furniture and Furnishing	378	2,823	392.5	20
5712	Furniture and Kitchen Design Stores	168	1,568	251.0	12

WOODSTOCK RD. & CONCORD RD. CARMEL, NY, 0.00-20.00 Miles, Total

Prepared For: Tim Miller Assoc.

Project Code: 1492188-1

Order #: 963277662

Site: 01

SIC		Total	Total	Sales	Establishments
Code	Business Description	Establishments	Employees	(in Millions)	20+ Employees
5713	Floor Covering Stores	74	380	76.0	0
5719	Miscellaneous Home Furnishing Stores	111	811	61.7	8
572	Household Appliance Stores	81	361	64.2	3
573	Radio, TV and Computer Store	360	2,543	592.0	12
5731	Radio, TV, Electronic Stores	67	392	60.6	4
5734	Computer Hardware and Software Stores	193	1,690	459.5	5
5735	Music, Video CD's and Tape Stores	62	338	52.3	2
58	Eating and Drinking Places	1,572	17,708	883.1	215
5812	Eating Places	1,516	17,391	869.0	211
5813	Drinking Places	56	317	14.1	4
59	Miscellaneous Retail	1,903	10,652	1,163.9	90
591	Drug Stores and Proprietary	125	1,708	219.4	20
592	Liquor Stores	145	465	37.8	1
593	Used Merchandise Stores	210	706	47.6	5
5932A	Antique Stores	142	227	15.3	0
594	Miscellaneous Shopping Goods Stores	735	4,002	299.1	38
5941	Sporting Goods, Bicycle and Gun Stores	141	768	41.0	7
5942	Book Stores	57	428	22.5	5
5943	Stationery Stores	39	389	70.6	9
5944	Jewelry Stores	111	427	24.5	2
5945	Hobby, Toy and Game Shops	91	660	44.2	8
5946	Camera and Photography Supply Stores	7	48	9.5	0
5947	Gift, Novelty and Souvenir Shops	252	1,085	73.5	5
5948	Luggage and Leather Goods Stores	6	27	1.4	0
5949	Sewing, Needlework and Craft Stores	31	170	11.9	2
596	NonStore Retailers	61	552	89.0	7
5961	Catalog and Mail Order Houses	9	199	39.8	4
598	Fuel and Ice Dealers	7	27	6.2	0
599	Retail Stores, NEC	. 620	3,192	464.8	19
5992	Florists	119	544	30.8	1
5993	Tobacco Stores and Stands	31	73	4.6	0
5994	News Dealers and Newsstands	4	32	1.7	0
5995	Optical Goods Stores	43	274	24.9	4
5999	Miscellaneous Retail Stores NEC	423	2,269	402.8	14
5999M	Pet Shops	55	364	64.5	5

WOODSTOCK RD. & CONCORD RD. CARMEL, NY. 0.00-20.00 Miles, Total

Prepared from Claritas Business-Facts which includes data from infoUSA.

Prepared For: Tim Miller Assoc.

Project Code: 1492188-1

Order #: 963277662 Site: 01

	Appendix: Area Listing		
Area Name:			
Type: Radius	Reporting Detail: Aggregate	Reporting Level: Bl	ock Group
Radius Definition:	· · · · · · · · · · · · · · · · · · ·		
WOODSTOCK RD. & CONCORD RD	. CARMEL, NY	Center Point: Circle/Band:	41.468280 -73.650450 0.00 - 3.00
Area Name:			
Type: Radius	Reporting Detail: Aggregate	Reporting Level: Bl	ock Group
Radius Definition:			
WOODSTOCK RD. & CONCORD RD	. CARMEL, NY	Center Point: Circle/Band:	41.468280 -73.650450 0.00 - 10.00
Area Name:			
Type: Radius	Reporting Detail: Aggregate	Reporting Level: Bl	ock Group
Radius Definition:			
WOODSTOCK RD. & CONCORD RD	. CARMEL, NY	Center Point: Circle/Band:	41.468280 -73.650450 0.00 - 20.00

Prepared For: Tim Miller Assoc.

Project Code: 1492188-1

Order #: 963277662

Site: 01

WOODSTOCK RD. & CONCORD RD. CARMEL, NY, 0.00-3.00 Miles, Total

	Aggregate (in 000's)		Per <u>Capita</u>		Average Household		Market Index <u>to USA</u>	
Annual Expenditures	2004	2009	2004	2009	2004	2009	2004	2009
Apparel:								
Total Apparel	32,876	40,484	2,045	2,387	5,830	6,735	1.46	1.46
Women's Apparel	9,377	11,716	583	691	1,663	1,949	1.45	1.44
Men's Apparel	6,166	7,414	383	437	1,093	1,233	1.42	1.42
Girl's Apparel	1,794	2,286	112	135	318	380	1.30	1.31
Boy's Apparel	1,726	2,164	107	128	306	360	1.31	1.31
Infant's Apparel	690	812	43	48	122	135	1.20	1.21
Footwear (excl. Infants)	3,534	4,229	220	249	627	703	1.35	1.35
Other Apparel Prods/Services	9,589	11,862	596	699	1,701	1,973	1.65	1.64
Entertainment:								
Sports and Recreation	10,180	13,803	633	814	1,805	2,296	1.44	1.45
TV, Radio and Sound Equipment	13,482	17,327	838	1,022	2,391	2,883	1.38	1.38
Reading Materials	3,878	4,975	241	293	688	828	1.41	1.40
Travel	11,678	14,350	726	846	2,071	2,387	1.60	1.58
Photographic Equipment	1,313	1,437	82	85	233	239	1.62	1.59
Food at Home:								
Total Food at Home	36,329	41,094	2,259	2,423	6,442	6,837	1.23	1.22
Cereal Products	2,021	2,213	126	130	358	368	1.25	1.24
Bakery Products	4,170	4,471	259	264	740	744	, 1.32	1.31
Fish and Seafood	904	1,057	56	62	160	176	1.44	1.42
Meats (All)	7,699	8,855	479	522	1,365	1,473	1.24	1.24
Dairy Products	3,870	4,253	241	251	686	708	1.28	1.27
Fresh Milk and Cream	955	1,026	59	61	169	171	1.17	1.16
Eggs	396	492	25	29	70	82	1.13	1.12
Other Dairy Products	2,519	2,735	157	161	447	455	1.36	1.34
Fruits and Vegetables	4,592	5,227	286	308	814	870	1.28	1.27
Juices	1,224	1,345	76	79	217	224	1.41	1.40
Sugar and Other Sweets	2,242	2,574	139	152	398	428	1.20	1.20
Fats and Oils	312	368	19	22	55	61	1.18	1.17
Nonalcoholic Beverages	3,316	3,442	206	203	588	573	1.14	1.13
Prepared Foods	5,979	7,288	372	430	1,060	1,212	1.12	1.11

Prepared on: January 12, 2005

© 2005 CLARITAS INC. All rights reserved.

Page 1 of 11

Prepared For: Tim Miller Assoc. Project Code: 1492188-1

Order #: 963277662 Site: 01

	Aggregate (in 000's)		Per <u>Capita</u>		Average <u>Household</u>		Market Index <u>to USA</u>	
Annual Expenditures	2004	2009	2004	2009	2004	2009	2004	2009
Health Care:								
Total Health Care	21,343	32,809	1,327	1,934	3,785	5,458	1.07	1.04
Medical Services	10,608	13,775	660	812	1,881	2,292	1.31	1.32
Prescription Drugs	9,719	17,617	604	1,039	1,724	2,931	.88	.88
Medical Supplies	1,016	1,417	63	84	180	236	1.26	1.26
Household Equipment:								
Total Household Textiles	4,371	5,481	272	323	775	912	1.46	1.47
Domestic Textiles	1,721	2,246	107	132	305	374	1.37	1.38
Window and Furniture Covers	2,650	3,234	165	191	470	538	1.52	1.55
Total Furniture	6,609	7,762	411	458	1,172	1,291	1.51	1.52
Bedroom Furniture	1,790	2,102	111	124	317	350	1.46	1.47
Living/Dining Room Furniture	3,068	3,471	191	205	544	577	1.54	1.56
Other Furniture	1,752	2,189	109	129	311	364	1.50	1.52
Major Appliances	2,336	2,489	145	147	414	414	1.36	1.36
Small Appliance/Houseware	4,568	5,339	284	315	810	888	1.36	1.38
Misc Household Equipment	3,989	5,139	248	303	707	855	1.38	1.36
Misc Personal Items:								
Personal Care Products and Services	6,530	8,684	406	512	1,158	1,445	1.29	1.29
Personal Expenses and Services	10,208	12,702	635	749	1,810	2,113	, 1.36	1.38
Smoking Prods/Supplies	5,380	6,350	335	374	954	1,056	1.18	1.17
Miscellaneous Items:								
Total Education	10,496	13,898	653	819	1,861	2,312	1.60	1.61
Room and Board	803	877	50	52	142	146	1.83	1.82
Tuition/School Supplies	9,693	13,021	603	768	1,719	2,166	1.58	1.60
Pet Expenses	3,171	4,147	197	244	562	690	1.28	1.28
Day Care	2,507	3,457	156	204	445	575	1.40	1.39
Contributions (All)	13,234	16,662	823	982	2,347	2,772	1.34	1.35

WOODSTOCK RD. & CONCORD RD. CARMEL, NY, 0.00-3.00 Miles, Total

Prepared For: Tim Miller Assoc. Project Code: 1492188-1

Order #: 963277662

Site: 01

WOODSTOCK RD. & CONCORD RD. CARMEL, NY, 0.00-3.00 Miles, Total

	Aggregate (in 000's)		Per <u>Capita</u>	1	Average <u>Household</u>		Market Index <u>to USA</u>	:
Annual Expenditures	2004	2009	2004	2009	2004	2009_	2004	2009
Other Misc. Expenses:								
Housekeeping Supplies	2,203	2,839	137	167	391	472	1.25	1.24
Total Food away from Home	35,706	43,266	2,221	2,551	6,332	7,198	1.39	1.37
Breakfast and Brunch	2,313	3,172	144	187	410	528	1.24	1.23
Dinner	12,382	14,196	770	837	2,196	2,362	1.50	1.48
Lunch	8,843	11,420	550	673	1,568	1,900	1.28	1.27
Snacks and Non Alcoholic Beverage	2,814	3,858	175	227	499	642	1.26	1.25
Catered Affairs	893	1,012	56	60	158	168	1.64	1.60
Food and Nonalcoholic Bevgs on Trips	8,462	9,607	526	566	1,501	1,598	1.44	1.43
Total Alcoholic Beverages	9,036	10,433	562	615	1,602	1,736	1.32	1.31
Alcoholic Beverages at Home	5,902	6,958	367	410	1,047	1,158	1.25	1.25
Alcoholic Beverages away from Home	3,134	3,475	195	205	556	578	1.47	1.46
Shelter and Related Expenses:								
Household Services	4,229	6,137	263	362	750	1,021	1.48	1.48
Household Repairs	9,830	11,266	611	664	1,743	1,874	1.53	1.50
Total Housing Expenses	6,687	7,152	416	422	1,186	1,190	1.47	1.40
Fuels and Utilities	2,276	2,008	142	118	404	334	2.67	2.43
Telephone Service	4,411	5,144	274	303	782	856	1.19	1.20
Transportation Expenses:							r	
Total Transportation Expenses	50,884	66,348	3,164	3,912	9,024	11,038	1.33	1.32
New Autos/Trucks/Vans	24,138	27,840	1,501	1,641	4,280	4,631	1.50	1.49
Used Vehicles	13,920	19,760	866	1,165	2,468	3,287	1.14	1.15
Boats and Outboard Motor, Etc	2,270	2,552	141	150	402	424	1.48	1.58
Towing Charges	39	52	2	3	7	9	1.20	1.24
Gasoline	8,964	14,104	557	832	1,590	2,346	1.23	1.22
Diesel Fuel	90	97	6	6	16	16	1.34	1.29
Rented Vehicles	1,465	1,944	91	115	260	323	1.48	1.49
Automotive Maintenace/Repair/Other	12,490	14,490	777	854	2,215	2,411	1.37	1.38
Total Specified Consumer Expenditures	335,542	420,320	20,867	24,782	59,504	69,925	1.35	1.34

Prepared For: Tim Miller Assoc.

Project Code: 1492188-1

Order #: 963277662 Site: 01

WOODSTOCK RD. & CONCORD RD. CARMEL, NY, 0.00-10.00 Miles, Total

	Aggregate (in 000's)		Per <u>Capita</u>		Average Household		Market Index <u>to USA</u>	
Annual Expenditures	2004	2009	2004	2009	2004	2009	2004	2009
Apparel:								
Total Apparel	312,018	385,472	2,201	2,568	6,371	7,374	1.59	1.60
Women's Apparel	88,715	111,499	626	743	1,811	2,133	1.57	1.58
Men's Apparel	57,843	69,907	408	466	1,181	1,337	1.54	1.54
Girl's Apparel	16,616	21,298	117	142	339	407	1.38	1.40
Boy's Apparel	15,548	19,625	110	131	317	375	1.36	1.37
Infant's Apparel	6,587	7,765	46	52	134	149	1.32	1.33
Footwear (excl. Infants)	32,786	39,515	231	263	669	756	1.44	1.45
Other Apparel Prods/Services	93,923	115,862	663	772	1,918	2,216	1.86	1.85
Entertainment:								
Sports and Recreation	99,718	135,574	703	903	2,036	2,593	1.62	1.64
TV, Radio and Sound Equipment	127,391	163,804	899	1,091	2,601	3,133	1.50	1.50
Reading Materials	36,979	47,528	261	317	755	909	1.55	1.54
Travel	114,823	141,070	810	940	2,344	2,699	1.81	1.79
Photographic Equipment	12,508	13,710	88	91	255	262	1.77	1.75
Food at Home:								
Total Food at Home	321,981	365,652	2,271	2,436	6,574	6,995	1.26	1.25
Cereal Products	17,806	19,569	126	130	364	374	1.27	1.26
Bakery Products	37,223	40,094	263	267	760	767	1.36	1.35
Fish and Seafood	8,072	9,468	57	63	165	181	1.48	1.46
Meats (All)	67,805	78,196	478	521	1,384	1,496	1.26	1.26
Dairy Products	34,138	37,648	241	251	697	720	1.30	1.29
Fresh Milk and Cream	8,402	[′] 9,062	59	60	172	173	1.18	1.18
Eggs	3,473	4,323	25	29	71	83	1.14	1.14
Other Dairy Products	22,263	24,264	157	162	455	464	1.38	1.37
Fruits and Vegetables	41,268	47,140	291	314	843	902	1.33	1.32
Juices	10,901	12,007	77	80	223	230	1.44	1.44
Sugar and Other Sweets	20,138	23,306	142	155	411	446	1.24	1.25
Fats and Oils	2,742	3,253	19	22	56	62	1.20	1.19
Nonalcoholic Beverages	29,011	30,239	205	201	592	578	1.14	1.14
Prepared Foods	52,877	64,734	373	431	1,080	1,238	1.14	1.13

Pepared on: January 12, 2005

© 2005 CLARITAS INC. All rights reserved.

Page 4 of 11

Prepared For: Tim Miller Assoc. Project Code: 1492188-1 Order #: 963277662 Site: 01

	Aggregate (in 000's)		Per <u>Capita</u>		Average Household		Market Index <u>to USA</u>	
Annual Expenditures	2004 .	2009	2004	2009	2004	2009	2004	2009
Health Care:								
Total Health Care	206,940	318,312	1,460	2,120	4,225	6,089	1.20	1.16
Medical Services	103,085	133,917	727	892	2,105	2,562	1.47	1.48
Prescription Drugs	94,160	170,807	664	1,138	1,923	3,267	.99	.99
Medical Supplies	9,695	13,587	68	91	198	260	1.38	1.39
Household Equipment:								
Total Household Textiles	43,121	54,055	304	360	880	1,034	1.66	1.67
Domestic Textiles	16,273	21,288	115	142	332	407	1.49	1.50
Window and Furniture Covers	26,848	32,767	189	218	548	627	1.78	1.81
Total Furniture	66,018	77,444	466	516	1,348	1,481	1.74	1.74
Bedroom Furniture	17,452	20,517	123	137	356	392	1.64	1.65
Living/Dining Room Furniture	31,202	35,243	220	235	637	674	1.80	1.82
Other Furniture	17,365	21,684	122	144	355	415	1.72	1.73
Major Appliances	21,775	23,209	154	155	445	444	1.46	1.46
Small Appliance/Houseware	44,812	52,342	316	349	915	1,001	1.54	1.55
Misc Household Equipment	37,620	48,677	265	324	768	931	1.50	1.49
Misc Personal Items:								
Personal Care Products and Services	59,952	79,905	423	532	1,224	1,529	1.37	1.37
Personal Expenses and Services	103,184	128,559	728	856	2,107	2,459	, 1.58	1.61
Smoking Prods/Supplies	43,560	51,428	307	343	889	984	1.10	1.09
Miscellaneous Items:								
Total Education	101,651	ʻ 134,993	717	899	2,075	2,582	1.78	1.80
Room and Board	7,511	8,182	53	55	153	157	1.97	1.95
Tuition/School Supplies	94,139	126,811	664	845	1,922	2,426	1.77	1.79
Pet Expenses	29,913	39,306	211	262	611	752	1.39	1.39
Day Care	24,605	33,852	174	226	502	648	1.58	1.56
Contributions (All)	132,011	166,300	931	1,108	2,695	3,181	1.53	1.55

WOODSTOCK RD. & CONCORD RD. CARMEL, NY, 0.00-10.00 Miles, Total

Prepared For: Tim Miller Assoc.

Order #: 963277662

Project Code: 1492188-1

Site: 01

WOODSTOCK RD. & CONCORD RD. CARMEL, NY, 0.00-10.00 Miles, Total

	Aggregate (in 000's)		Per <u>Capita</u>		Average Housebold		Market Index <u>to USA</u>	
Annual Expenditures	2004	2009	2004	2009	2004	2009	2004	2009
Other Misc. Expenses:								
Housekeeping Supplies	19,680	25,444	139	169	402	487	1.29	1.28
Total Food away from Home	325,781	395,688	2,298	2,636	6,652	7,569	1.46	1.44
Breakfast and Brunch	20,545	28,214	145	188	419	540	1.26	1.26
Dinner	113,491	130,657	801	870	2,317	2,499	1.58	1.57
Lunch	79,754	103,348	563	688	1,628	1,977	1.33	1.32
Snacks and Non Alcoholic Beverage	24,738	34,053	175	227	505	651	1.27	1.27
Catered Affairs	8,193	9,296	58	62	167	178	1.73	1.69
Food and Nonalcoholic Bevgs on Trips	79,059	90,121	558	600	1,614	1,724	1.55	1.54
Total Alcoholic Beverages	82,878	95,839	585	638	1,692	1,833	1.39	1.39
Alcoholic Beverages at Home	53,649	63,246	378	421	1,095	1,210	1.31	1.31
Alcoholic Beverages away from Home	29,229	32,593	206	217	597	623	1.58	1.57
Shelter and Related Expenses:								
Household Services	40,896	59,206	288	394	835	1,133	1.65	1.65
Household Repairs	94,384	108,425	666	722	1,927	2,074	1.69	1.66
Total Housing Expenses	60,626	65,207	428	434	1,238	1,247	1.53	1.46
Fuels and Utilities	20,331	17,980	143	120	415	344	2.74	2.50
Telephone Service	40,295	47,227	284	315	823	903	1.25	1.26
Transportation Expenses:							,	
Total Transportation Expenses	472,099	615,008	3,330	4,097	9,639	11,765	1.42	1.40
New Autos/Trucks/Vans	230,908	266,582	1,629	1,776	4,715	5,100	1.65	1.65
Used Vehicles	124,701	178,434	880	1,189	2,546	3,413	1.17	1.20
Boats and Outboard Motor, Etc	21,447	24,252	151	162	438	464	1.60	1.73
Towing Charges	327	437	2	3	7	8	1.17	1.20
Gasoline	79,528	125,393	561	835	1,624	2,399	1.25	1.25
Diesel Fuel	760	817	5	5	16	16	1.30	1.25
Rented Vehicles	14,428	19,095	102	127	295	365	1.68	1.68
Automotive Maintenace/Repair/Other	114,966	133,796	811	891	2,347	2,559	1.45	1.46
Total Specified Consumer Expenditures	3,151,890	3,959,807	22,235	26,379	64,354	75,748	1.46	1.45

© 2005 CLARITAS INC. All rights reserved.

Prepared For: Tim Miller Assoc. Project Code: 1492188-1

Order #: 963277662 Site: 01

WOODSTOCK RD. & CONCORD RD. CARMEL, NY, 0.00-20.00 Miles, Total

	Aggregate (in 000's)		Per <u>Capita</u>		Average <u>Household</u>		Market Index <u>to USA</u>	
Annual Expenditures	2004 ,	2009	2004	2009	2004	2009	2004	2009
Apparel:								
Total Apparel	1,501,012	1,820,477	2,119	2,448	6,039	6,945	1.51	1.51
Women's Apparel	422,642	521,939	597	702	1,701	1,991	1.48	1.48
Men's Apparel	277,063	328,828	391	442	1,115	1,254	1.45	1.45
Girl's Apparel	81,999	103,233	116	139	330	394	1.34	1.35
Boy's Apparel	76,883	95,647	109	129	309	365	1.32	1.33
Infant's Apparel	32,767	38,011	46	51	132	145	1.29	1.30
Footwear (excl. Infants)	157,853	187,206	223	252	635	714	1.37	1.37
Other Apparel Prods/Services	451,805	545,614	638	734	1,818	2,081	1.76	1.73
Entertainment:								
Sports and Recreation	473,544	630,497	668	848	1,905	2,405	1.52	1.52
TV, Radio and Sound Equipment	611,273	772,538	863	1,039	2,459	2,947	1.42	1.41
Reading Materials	177,523	224,334	251	302	714	856	1.46	1.45
Travel	543,814	654,701	768	880	2,188	2,498	1.69	1.66
Photographic Equipment	58,902	63,509	83	85	237	242	1.65	1.61
Food at Home:								
Total Food at Home	1,576,357	1,772,512	2,225	2,384	6,342	6,762	1.21	1.21
Cereal Products	88,133	96,109	124	129	355	367	1.24	1.23
Bakery Products	181,029	192,901	256	259	728	736	, 1.30	1.29
Fish and Seafood	39,111	45,386	55	61	157	173	1.41	1.40
Meats (All)	337,323	385,882	476	519	1,357	1,472	1.24	1.24
Dairy Products	166,191	181,546	235	244	669	693	1.25	1.24
Fresh Milk and Cream	41,195	<i>4</i> 3,994	58	59	166	168	1.14	1.14
Eggs	17,601	21,755	25	29	71	83	1.14	1.14
Other Dairy Products	107,395	115,797	152	156	432	442	1.32	1.31
Fruits and Vegetables	202,618	228,988	286	308	815	874	1.28	1.28
Juices	53,772	58,612	76	79	216	224	1.40	1.40
Sugar and Other Sweets	97,658	111,611	138	150	393	426	1.19	1.19
Fats and Oils	13,426	15,775	19	21	54	60	1.16	1.15
Nonalcoholic Beverages	141,344	145,875	200	196	569	556	1.10	1.10
Prepared Foods	255,754	309,828	361	417	1,029	1,182	1.08	1.08

Prepared on: January 12, 2005

© 2005 CLARITAS INC. All rights reserved.

Page 7 of 11

Prepared For: Tim Miller Assoc.

Order #: 963277662

Project Code: 1492188-1

Site: 01

WOODSTOCK RD. & CONCORD RD. CARMEL, NY, 0.00-20.00 Miles, Total

	Aggregate (in 000's)		Per <u>Capita</u>		Average <u>Household</u>		Market Index <u>to USA</u>	
Annual Expenditures	2004	2009	2004	2009	2004		2004	2009
Health Care:								
Total Health Care	1,000,423	1,517,441	1,412	2,041	4,025	5,789	1.14	1.11
Medical Services	496,153	632,486	700	851	1,996	2,413	1.39	1.39
Prescription Drugs	457,910	820,983	646	1,104	1,842	3,132	.95	.95
Medical Supplies	46,360	63,972	65	86	187	244	1.30	1.31
Household Equipment:								
Total Household Textiles	203,597	249,856	287	336	819	953	1.54	1.54
Domestic Textiles	77,355	99,403	109	134	311	379	1.40	1.40
Window and Furniture Covers	126,242	150,453	178	202	508	574	1.65	1.65
Total Furniture	311,174	357,291	439	481	1,252	1,363	1.61	1.61
Bedroom Furniture	82,675	95,320	117	128	333	364	1.53	1.53
Living/Dining Room Furniture	146,868	162,100	207	218	591	618	1.67	1.67
Other Furniture	81,630	99,872	115	134	328	381	1.59	1.59
Major Appliances	100,498	105,704	142	142	404	403	1.33	1.32
Small Appliance/Houseware	209,609	240,554	296	324	843	918	1.42	1.42
Misc Household Equipment	173,680	222,070	245	299	699	847	1.36	1.35
Misc Personal Items:								
Personal Care Products and Services	290,899	381,964	411	514	1,170	1,457	1.31	1.31
Personal Expenses and Services	495,709	602,799	700	811	1,994	2,300	, 1.49	1.50
Smoking Prods/Supplies	213,236	248,653	301	334	858	949	1.06	1.05
Miscellaneous Items:								
Total Education	476,164	· 617,104	672	830	1,916	2,354	1.64	1.64
Room and Board	33,449	35,634	47	48	135	136	1.73	1.69
Tuition/School Supplies	442,716	581,470	625	782	1,781	2,218	1.64	1.64
Pet Expenses	137,922	179,229	195	241	555	684	1.27	1.27
Day Care	118,433	160,132	167	215	477	611	1.50	1.47
Contributions (All)	639,430	788,054	903	1,060	2,573	3,006	1.46	1.47

Prepared For: Tim Miller Assoc. Project Code: 1492188-1

Order #: 963277662 Site: 01

WOODSTOCK RD. & CONCORD RD. CARMEL, NY, 0.00-20.00 Miles, Total

	Aggregate (in 000's)		Per <u>Capita</u>	L	Average <u>Household</u>		Market Index <u>to USA</u>	
Annual Expenditures		2009	2004	2009	2004	2009	2004	2009
Other Misc. Expenses:								
Housekeeping Supplies	95,232	121,727	134	164	383	464	1.23	1.22
Total Food away from Home	1,559,464	1,867,531	2,201	2,512	6,275	7,124	1.38	1.36
Breakfast and Brunch	99,941	135,523	141	182	402	517	1.21	1.20
Dinner	539,063	611,153	761	822	2,169	2,331	1.48	1.46
Lunch	386,816	494,340	546	665	1,556	1,886	1.27	1.26
Snacks and Non Alcoholic Beverage	120,048	163,015	169	219	483	622	1.21	1.21
Catered Affairs	38,116	42,750	54	57	153	163	1.59	1.55
Food and Nonalcoholic Bevgs on Trips	375,480	420,750	530	566	1,511	1,605	1.45	1.44
Total Alcoholic Beverages	398,500	453,502	562	610	1,603	1,730	1.32	1.31
Alcoholic Beverages at Home	259,458	301,360	366	405	1,044	1,150	1.25	1.24
Alcoholic Beverages away from Home	139,042	152,141	196	205	559	580	1.48	1.46
Shelter and Related Expenses:								
Household Services	200,269	283,793	283	382	806	1,083	1.59	1.57
Household Repairs	420,987	478,167	594	643	1,694	1,824	1.48	1.46
Total Housing Expenses	297,232	314,464	420	423	1,196	1,200	1.48	1.41
Fuels and Utilities	99,392	86,273	140	116	400	329	2.64	2.40
Telephone Service	197,839	228,192	279	307	796	871	1.21	1.22
Transportation Expenses:							t	
Total Transportation Expenses	2,220,848	2,846,748	3,135	3,829	8,936	10,860	1.32	1.29
New Autos/Trucks/Vans	1,094,537	1,244,147	1,545	1,673	4,404	4,746	1.54	1.53
Used Vehicles	573,073	806,566	809	1,085	2,306	3,077	1.06	1.08
Boats and Outboard Motor, Etc	99,269	· 108,948	140	147	399	416	1.46	1.55
Towing Charges	1,613	2,104	2	3	6	8	1.13	1.16
Gasoline	379,197	591,021	535	795	1,526	2,255	1.18	1.17
Diesel Fuel	3,544	3,820	5	5	14	15	1.20	1.16
Rented Vehicles	69,616	90,142	98	121	280	344	1.60	1.58
Automotive Maintenace/Repair/Other	541,585	620,237	764	834	2,179	2,366	1.35	1.35
Total Specified Consumer Expenditures	15,047,319	18,595,589	21,239	25,009	60,543	70,938	1.37	1.36

© 2005 CLARITAS INC. All rights reserved.

Prepared For: Tim Miller Assoc.

Project Code: 1492188-1

Order #: 963277662 Site: 01

Claritas' Consumer Spending Patterns Report is derived from the Consumer Buying Power (CBP) database using information from the U.S. Bureau of Labor Statistics (BLS) Consumer Expenditure Survey (CEX).

The Annual Aggregate (in 000's) is used to obtain the Annual Per Capitas and the Average Household data by dividing the aggregate by the corresponding total household population and total households, respectively. The Market Index value is the ratio of the Annual Average Household Expenditure (AAHE) for the geography that this report is being produced, as compared to the "AAHE" for the U.S.A.

Current Year Estimates and Five Year Projections are produced by Claritas, Inc.

Page 10 of 11

Co	nsumer Spending Patteri	ns Report	
Prepared For: Tim Miller Assoc.			Order #: 963277662
Project Code: 1492188-1	[4] A. L. Tarra, M. L. Shan, and K.	and a second	Site: 01
	Appendix: Area Listi	ng	
Area Name:			
Type: Radius	Reporting Detail: Aggregate	Reporting Level: Blo	ock Group
Radius Definition:	,		
WOODSTOCK RD. & CONCORD RD	. CARMEL, NY	Center Point: Circle/Band:	41.468280 -73.650450 0.00 - 3.00
Area Name:			
Type: Radius	Reporting Detail: Aggregate	Reporting Level: Blo	ock Group
Radius Definition:			
WOODSTOCK RD. & CONCORD RD	. CARMEL, NY	Center Point: Circle/Band:	41.468280 -73.650450 0.00 - 10.00
Area Name:			
Type: Radius	Reporting Detail: Aggregate	Reporting Level: Blo	ock Group
Radius Definition:			
WOODSTOCK RD. & CONCORD RD	. CARMEL, NY	Center Point: Circle/Band:	41.468280 -73.650450 0.00 - 20.00

Prepared For: Tim Miller Assoc.

Order #: 963277662

Project Code: 1492188-1

Site: 01

	0.00 - 3.00		0.00 - 10.00		0.00 - 20.00	Miles
Description	Radius	%	Radius	%	Radius	%
Population						
2009 Projection	16,961		150,114		743,565	
2004 Estimate	16,080		141,755		708,488	
2000 Census	15,331		134,970		679,676	
1990 Census	14,200		118,397		616,791	
Growth 2004-2009	5.48%		5.90%		4.95%	
Growth 2000-2004	4.89%		5.03%		4.24%	
Growth 1990-2000	7.96%		14.00%		10.20%	
2004 Est. Population by Single Race Classification	16,080		141,755		708,488	
White Alone	14,798	92.03	129,857	91.61	597,338	84.31
Black or African American Alone	379	2.36	3,679	2.60	44,263	6.25
American Indian and Alaska Native Alone	30	0.19	195	0.14	1,574	0.22
Asian Alone	206	1.28	3,037	2.14	22,567	3.19
Native Hawaiian and Other Pacific Islander Alone	3	0.02	57	0.04	236	0.03
Some Other Race Alone	431	2.68	2,859	2.02	27,274	3.85
Two or More Races	233	1.45	2,071	1.46	15,234	2.15
2004 Est. Population Hispanic or Latino by Origin*	16,080		141,755		708,488	
Not Hispanic or Latino	14,674	91.26	131,117	92.50	634,855	89.61
Hispanic or Latino:	1,406	8.74	10,637	7.50	73,633	10.39
Mexican	139	9.89	1,147	10.78	10,407	14.13
Puerto Rican	615	43.74	3,768	35.42	24,673	33.51
Cuban	56	3.98	450	4.23	1,978	2.69
All Other Hispanic or Latino	596	42.39	5,272	49.56	36,575	49.67
2004 Est. Hispanic or Latino by Single Race Class.	1,406		10,637		73,633	
White Alone	884	62.87	6,903	64.90	39,757	53.99
Black or African American Alone	13	0.92	186	1.75	2,703	3.67
American Indian and Alaska Native Alone	· 0	0.00	69	0.65	545	0.74
Asian Alone	12	0.85	29	0.27	218	0.30
Native Hawaiian and Other Pacific Islander Alone	1	0.07	30	0.28	82	0.11
Some Other Race Alone	405	28.81	2,653	24.94	25,118	34.11
Two or More Races	92	6.54	767	7.21	5,211	7.08

Prepared For: Tim Miller Assoc.

Order #: 963277662

Project Code: 1492188-1

Site: 01

Trade Area: WOODSTOCK RD. & CONCORD RD. CARMEL, NY, Total

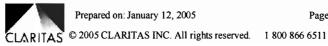
Description	0.00 - 3.00 <i>Radius</i>	Miles %	0.00 - 10.00 Radius	Miles %	0.00 - 20.00 Radius	Miles %
2004 Est. Pop. Asian Alone Race by Category*		·	3,037		22,567	
Chinese, except Taiwanese	64	31.07	826	27.20	5,693	25.23
Filipino	33	16.02	336	11.06	2,092	9.27
Japanese	14	6.80	135	4.45	787	3.49
Asian Indian	54	26.21	941	30.98	7,514	33.30
Korean	17	8.25	274	9.02	1,967	8.72
Vietnamese	3	1.46	104	3.42	1,013	4.49
Cambodian	0	0.00	101	3.33	1,153	5.11
Hmong	0	0.00	0	0.00	0	0.00
Laotian	0	0.00	49	1.61	305	1.35
Thai	7	3.40	30	0.99	199	0.88
Other Asian	11	5.34	190	6.26	1,506	6.67
Two or more Asian categories	4	1.94	49	1.61	337	1.49
2004 Est. Population by Ancestry	16,080		141,755		708,488	
Pop, Arab	25	0.16	725	0.51	3,262	0.46
Pop, Czech	89	0.55	651	0.46	3,242	0.46
Pop, Danish	58	0.36	394	0.28	1,505	0.21
Pop, Dutch	85	0.53	966	0.68	5,461	0.77
Pop, English	600	3.73	6,332	4.47	37,108	5.24
Pop, French (except Basque)	159	0.99	1,346	0.95	8,503	1.20
Pop, French Canadian	117	0.73	810	0.57	5,391	0.76
Pop, German	1,202	7.48	12,906	9.10	58,958	8.32
Pop, Greek	60	0.37	983	0.69	4,276	0.60
Pop, Hungarian	59	0.37	892	0.63	5,158	0.73
Pop, Irish	3,408	21.19	25,213	17.79	104,330	14.73
Pop, Italian	4,150	25.81	35,192	24.83	140,896	19.89
Pop, Lithuanian	25	0.16	328	0.23	1,720	0.24
Pop, United States or American	644	4.00	5,348	3.77	26,986	3.81
Pop, Norwedian	124	0.77	972	0.69	4,116	0.58
Pop, Polish	413	2.57	4,390	3.10	21,416	3.02
Pop, Portuguese	65	0.40	974	0.69	6,589	0.93
Pop, Russian	204	1.27	2,180	1.54	12,494	1.76
Pop, Scottish	155	0.96	1,315	0.93	7,912	1.12
Pop, Scotch-Irish	80	0.50	1,267	0.89	6,104	0.86
Pop, Slovak	39	0.24	516	0.36	2,363	0.33
Pop, Subsaharan African	5	0.03	205	0.14	1,656	0.23
Pop, Swedish	218	1.36	1,251	0.88	6,081	0.86
Pop, Swiss	23	0.14	313	0.22	1,475	0.21
Pop, Ukrainian	18	0.11	366	0.26	2,573	0.36
Pop, Welsh	60	0.37	275	0.19	1,719	0.24
Pop, West Indian (exc Hisp groups)	104	0.65	596	0.42	5,629	0.79

Prepared on: January 12, 2005

Page 2 of 12

CLARITAS © 2005 CLARITAS INC. All rights reserved. 1 800 866 6511

Prepared For: Tim Miller Assoc.


Order #: 963277662

Project Code: 1492188-1

Site: 01

Trade Area: WOODSTOCK RD. & CONCORD RD. CARMEL, NY, Total

	0.00 - 3.00	Miles	0.00 - 10.00	Miles	0.00 - 20.00	Miles
Description	Radius	%	Radius	%	Radius	%
2004 Est. Population by Ancestry						
Pop, Other ancestries	1,579	9.82	17,053	12.03	132,986	18.77
Pop, Ancestry Unclassified	2,309	14.36	17,994	12.69	88,578	12.50
2004 Est. Pop Age 5+ by Language Spoken At Home	15,080		132,765		661,603	
Speak Only English at Home	13,441	89.13	115,797	87.22	551,500	83.36
Speak Asian/Pacific Islander Language at Home	103	0.68	1,332	1.00	9,655	1.46
Speak IndoEuropean Language at Home	752	4.99	8,504	6.41	48,196	7.28
Speak Spanish at Home	734	4.87	6,420	4.84	48,482	7.33
Speak Other Language at Home	50	0.33	711	0.54	3,771	0.57
2004 Est. Population by Sex	16,080		141,755		708,488	
Male	7,987	49.67	69,735	49.19	350,562	49.48
Female	8,093	50.33	72,020	50.81	357,926	50.52
Male/Female Ratio	0.99		0.97		0.98	
2004 Est. Population by Age	16,080		141,755		708,488	
Age 0 - 4	1,000	6.22	8,990	6.34	46,884	6.62
Age 5 - 9	1,206	7.50	10,188	7.19	52,293	7.38
Age 10 - 14	1,268	7.89	10,716	7.56	54,120	7.64
Age 15 - 17	696	4.33	6,291	4.44	30,859	4.36
Age 18 - 20	490	3.05	4,308	3.04	25,681	3.62
Age 21 - 24	673	4.19	5,637	3.98	30,867	4.36
Age 25 - 34	1,995	12.41	15,448	10.90	80,377	11.34
Age 35 - 44	3,010	18.72	26,140	18.44	125,892	17.77
Age 45 - 49	1,372	8.53	12,364	8.72	58,547	8.26
Age 50 - 54	1,198	7.45	10,757	7.59	51,458	7.26
Age 55 - 59	974	6.06	8,904	6.28	42,688	6.03
Age 60 - 64	705	4.38	6,504	4.59	30,469	4.30
Age 65 - 74	815	5.07	8,504	6.00	41,904	5.91
Age 75 - 84	, 470	2.92	5,121	3.61	26,354	3.72
Age 85 and over	210	1.31	1,884	1.33	10,095	1.42
Age 16 and over	12,378	76.98	109,764		544,944	
Age 18 and over	11,910	74.07	105,570		524,332	74.01
Age 21 and over	11,420	71.02	101,263	71.44	498,651	70.38
Age 65 and over	1,495	9.30	15,509	10.94	78,353	11.06
2004 Est. Median Age	37.37		38.56		37.63	
2004 Est. Average Age	36.46		37.44		36.91	

Page 3 of 12

Prepared For: Tim Miller Assoc.

Order #: 963277662

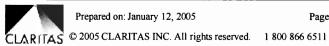
Site: 01

Project Code: 1492188-1

Trade Area: WOODSTOCK RD. & CONCORD RD. CARMEL, NY, Total

	0.00 - 3.00		0.00 - 10.00		0.00 - 20.00	
Description	Radius		Radius	%	Radius	%
2004 Est. Male Population by Age	7,987		69,735		350,562	
Age 0 - 4	. 516	6.46	4,620	6.63	23,930	6.83
Age 5 - 9	630	7.89	5,254	7.53	26,724	7.62
Age 10 - 14	654	8.19	5,488	7.87	27,735	7.91
Age 15 - 17	368	4.61	3,247	4.66	15,898	4.54
Age 18 - 20	248	3.11	2,332	3.34	13,910	3.97
Age 21 - 24	367	4.59	3,003	4.31	16,665	4.75
Age 25 - 34	988	12.37	7,577	10.87	39,975	11.40
Age 35 - 44	1,483	18.57	12,628	18.11	61,933	17.67
Age 45 - 49	671	8.40	6,030	8.65	29,063	8.29
Age 50 - 54	566	7.09	5,240	7.51	25,398	7.24
Age 55 - 59	485	6.07	4,354	6.24	20,952	5.98
Age 60 - 64	359	4.49	3,231	4.63	15,038	4.29
Age 65 - 74	374	4.68	3,955	5.67	19,685	5.62
Age 75 - 84	208	2.60	2,176	3.12	10,639	3.03
Age 85 and over	70	0.88	601	0.86	3,015	0.86
2004 Est. Median Age, Male	36.50		37.65		36.69	
2004 Est. Average Age, Male	35.54		36.43		35.84	
2004 Est. Female Population by Age	8,093		72,020		357,926	
Age 0 - 4	484	5.98	4,370	6.07	22,954	6.41
Age 5 - 9	575	7.10	4,934	6.85	25,568	7.14
Age 10 - 14	614	7.59	5,228	7.26	26,385	7.37
Age 15 - 17	328	4.05	3,043	4.23	14,960	4.18
Age 18 - 20	243	3.00	1,976	2.74	11,771	3.29
Age 21 - 24	305	3.77	2,634	3.66	14,202	3.97
Age 25 - 34	1,007	12.44	7,871	10.93	40,402	11.29
Age 35 - 44	1,527	18.87	13,512	18.76	63,958	17.87
Age 45 - 49	701	8.66	6,333	8.79	29,484	8.24
Age 50 - 54	. 631	7.80	5,517	7.66	26,059	7.28
Age 55 - 59	489	6.04	4,551	6.32	21,736	6.07
Age 60 - 64	346	4.28	3,273	4.54	15,431	4.31
Age 65 - 74	441	5.45	4,549	6.32	22,219	6.21
Age 75 - 84	262	3.24	2,945	4.09	15,716	4.39
Age 85 and over	140	1.73	1,283	1.78	7,079	1.98
2004 Est. Median Age, Female	38.21		39.41		38.55	
2004 Est. Average Age, Female	37.37		38.42		37.97	

Page 4 of 12


Prepared For: Tim Miller Assoc.

Project Code: 1492188-1

Order #: 963277662

Site: 01

	0.00 - 3.00		0.00 - 10.00		0.00 - 20.00	Miles
Description	Radius	%	Radius		Radius	%
2004 Est. Population Age 15+ by Marital Status*	12,607		111,861		555,191	
Total, Never Married	3,114	24.70	25,243	22.57	137,555	24.78
Married, Spouse present	7,358	58.36	68,670	61.39	320,197	57.67
Married, Spouse absent	575	4.56	4,754	4.25	26,913	4.85
Widowed	635	5.04	6,157	5.50	31,886	5.74
Divorced	925	7.34	7,037	6.29	38,640	6.96
Males, Never Married	1,769	14.03	14,038	12.55	75,644	13.62
Previously Married	562	4.46	4,507	4.03	26,136	4.71
Females, Never Married	1,345	10.67	11,205	10.02	61,912	11.15
Previously Married	1,292	10.25	10,319	9.22	54,250	9.77
2004 Est. Pop. Age 25+ by Educational Attainment*	10,747		95,626		467,783	
Less than 9th grade	302	2.81	2,982	3.12	22,077	4.72
Some High School, no diploma	950	8.84	6,203	6.49	39,445	8.43
High School Graduate (or GED)	3,142	29.24	25,848	27.03	119,173	
Some College, no degree	2,330	21.68	19,436	20.33	84,980	18.17
Associate Degree	903	8.40	6,914	7.23	33,142	7.08
Bachelor's Degree	1,906	17.74	19,924	20.84	97,047	20.75
Master's Degree	842	7.83	10,618	11.10	51,916	11.10
Professional School Degree	310	2.88	2,584	2.70	13,652	2.92
Doctorate Degree	63	0.59	1,118	1.17	6,350	1.36
Households						
2009 Projection	6,011		52,276		262,137	
2004 Estimate	5,639		48,977		248,539	
2000 Census	5,333		46,339		237,360	
1990 Census	4,729		38,933		211,402	
Growth 2004-2009	6.60%		6.74%		5.47%	
Growth 2000-2004	5.74%		5.69%		4.71%	
Growth 1990-2000	/ 12.77%		19.02%		12.28%	
2004 Est. Households by Household Type*	5,639		48,977		248,539	
Family Households	4,272	75.76	37,593	76.76	182,634	73.48
Nonfamily Households	,	24.24	11,384		65,905	
2004 Est. Group Quarters Population*	350		4,315		23,292	
2004 Households by Ethnicity, Hispanic/Latino	369	6.54	2,541	5.19	18,423	7.41

Prepared For: Tim Miller Assoc.

Order #: 963277662

Project Code: 1492188-1

Site: 01

Trade Area: WOODSTOCK RD. & CONCORD RD. CARMEL, NY, Total

	0.00 - 3.00	Miles	0.00 - 10.00	Miles	0.00 - 20.00	Miles
Description	Radius	%	Radius	%	Radius	%
2004 Est. Households by Household Income	5,639		48,977		248,539	
Income Less than \$15,000	374	6.63	2,445	4.99	17,697	7.12
Income \$15,000 - \$24,999	264	4.68	2,161	4.41	14,917	6.00
Income \$25,000 - \$34,999	319	5.66	3,044	6.22	18,989	7.64
Income \$35,000 - \$49,999	614	10.89	4,764	9.73	27,036	10.88
Income \$50,000 - \$74,999	1,207	21.40	9,182	18.75	45,050	18.13
Income \$75,000 - \$99,999	995	17.64	8,402	17.15	38,363	15.44
Income \$100,000 - \$149,999	1,198	21.24	10,217	20.86	43,626	17.55
Income \$150,000 - \$249,999	560	9.93	6,775	13.83	29,256	11.77
Income \$250,000 - \$499,999	91	1.61	1,547	3.16	8,799	3.54
Income \$500,000 and more	16	0.28	440	0.90	4,806	1.93
2004 Est. Average Household Income	\$88,758		\$102,578		\$101,005	
2004 Est. Median Household Income	\$76,042		\$83,607		\$75,379	
2004 Est. Per Capita Income	\$31,516		\$35,818		\$35,810	
2004 Est. Household Type, Presence Own Children*	5,639		48,977		248,539	
Single Male Householder	469	8.32	3,839	7.84	22,348	8.99
Single Female Householder	596	10.57	5,399	11.02	30,597	12.31
Married-Couple Family, own children	1,761	31.23	16,283	33.25	77,061	31.01
Married-Couple Family, no own children	1,773	31.44	16,197	33.07	74,824	30.11
Male Householder, own children	79	1.40	574	1.17	3,595	1.45
Male Householder, no own children	109	1.93	866	1.77	4,638	1.87
Female Householder, own children	314	5.57	1,793	3.66	12,240	4.92
Female Householder, no own children	237	4.20	1,880	3.84	10,276	4.13
Nonfamily, Male Householder	188	3.33	1,328	2.71	7,682	3.09
Nonfamily, Female Householder	114	2.02	819	1.67	5,278	2.12
2004 Est. Households by Household Size*	5,639		48,977		248,539	
1-person household	1,065	18.89	9,237	18.86	52,944	21.30
2-person household	, 1,742	30.89	15,443	31.53	76,626	30.83
3-person household	1,094	19.40	8,892	18.16	44,219	17.79
4-person household	1,087	19.28	9,252	18.89	44,379	17.86
5-person household	444	7.87	4,214		20,083	8.08
6-person household	144	2.55	1,381	2.82	6,819	2.74
7 or more person household	63	1.12	558	1.14	3,468	1.40
2004 Est. Average Household Size*	2.79		2.81		2.76	

Page 6 of 12

Prepared For: Tim Miller Assoc.

Order #: 963277662 Site: 01

Project Code: 1492188-1

	0.00 - 3.00		0.00 - 10.00		0.00 - 20.00	
Description	Radius	%	Radius	%	Radius	%
2004 Est. Households by Presence of People*	5,639		48,977		248,539	
Households with 1 or more People Age 18 or under:						
Married-Couple Family	,	32.52	16,797		79,621	32.04
Other Family, Male Householder	94	1.67	692	1.41	4,273	1.72
Other Family, Female Householder	366	6.49	2,126	4.34	14,123	5.68
Nonfamily, Male Householder	15	0.27	100	0.20	531	0.21
Nonfamily, Female Householder	3	0.05	20	0.04	137	0.06
Households no People Age 18 or under:						
Married-Couple Family	1,700	30.15	15,684		72,264	29.08
Other Family, Male Householder	94	1.67	748	1.53	3,961	1.59
Other Family, Female Householder	185	3.28	1,547	3.16	8,393	3.38
Nonfamily, Male Householder	642	11.38	5,066		29,499	11.87
Nonfamily, Female Householder	706	12.52	6,198	12.65	35,738	14.38
2004 Est. Households by Number of Vehicles*	5,639		48,977		248,539	
No Vehicles	207	3.67	1,683	3.44	15,639	6.29
1 Vehicle	1,474	26.14	11,787	24.07	66,938	26.93
2 Vehicles	2,372	42.06	22,730	46.41	112,200	45.14
3 Vehicles	1,095	19.42	9,164	18.71	38,656	15.55
4 Vehicles	364	6.46	2,634	5.38	10,851	4.37
5 or more Vehicles	128	2.27	980	2.00	4,254	1.71
2004 Est. Average Number of Vehicles*	2.08		2.07		1.92	
Family Households						
2009 Projection	4,519		39,760		190,986	
2004 Estimate	4,272		37,593		182,634	
2000 Census	4,065		35,827		175,611	
1990 Census	3,859		31,301		160,892	
Growth 2004-2009	. 5.78%		5.76%		4.57%	
Growth 2000-2004	5.09%		4.93%		4.00%	
Growth 1990-2000	5.34%		14.46%		9.15%	

Prepared For: Tim Miller Assoc.

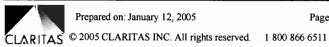
Project Code: 1492188-1

Order #: 963277662 Site: 01

Trade Area: WOODSTOCK RD. & CONCORD RD. CARMEL, NY, Total

	0.00 - 3.00	Miles	0.00 - 10.00	Miles	0.00 - 20.00	Miles
Description	Radius	%	Radius	%	Radius	%
2004 Est. Family Households by Household Income	4,272		37,593		182,634	
Income Less than \$15,000	176	4.12	769	2.05	6,016	3.29
Income \$15,000 - \$24,999	147	3.44	960	2.55	6,518	3.57
Income \$25,000 - \$34,999	195	4.56	1,536	4.09	9,514	5.21
Income \$35,000 - \$49,999	344	8.05	2,952	7.85	16,275	8.91
Income \$50,000 - \$74,999	885	20.72	6,831	18.17	33,628	18.41
Income \$75,000 - \$99,999	823	19.26	7,079	18.83	31,799	17.41
Income \$100,000 - \$149,999	1,078	25.23	9,536	25.37	40,061	21.94
Income \$150,000 - \$249,999	533	12.48	6,156	16.38	26,421	14.47
Income \$250,000 - \$499,999	80	1.87	1,393	3.71	7,984	4.37
Income \$500,000 and more	12	0.28	383	1.02	4,419	2.42
2004 Est. Average Family Household Income	\$98,379		\$114,748		\$116,855	
2004 Est. Median Family Household Income	\$86,833		\$95,304		\$90,226	
2004 Est. Families by Poverty Status*	4,272		37,593		182,634	
Income At or Above Poverty Level:						
Married-Couple Family, own children	1,870	43.77	16,763	44.59	78,969	43.24
Married-Couple Family, no own children	1,562	36.56	15,257	40.58	70,016	38.34
Male Householder, own children	35	0.82	596	1.59	3,780	2.07
Male Householder, no own children	117	2.74	659	1.75	3,549	1.94
Female Householder, own children	278	6.51	1,773	4.72	10,747	5.88
Female Householder, no own children	189	4.42	1,560	4.15	8,130	4.45
Income Below Poverty Level:						
Married-Couple Family, own children	41	0.96	258	0.69	1,901	1.04
Married-Couple Family, no own children	62	1.45	202	0.54	999	0.55
Male Householder, own children	31	0.73	145	0.39	656	0.36
Male Householder, no own children	5	0.12	39	0.10	248	0.14
Female Householder, own children	82	1.92	293	0.78	3,280	1.80
Female Householder, no own children	2	0.05	47	0.13	360	0.20
2004 Est. Pop Age 16+ by Employment Status*	. 12,378		109,764		544,944	
In Armed Forces	0	0.00	19	0.02	4,592	0.84
Civilian - Employed	8,454	68.30	71,823	65.43	350,455	64.31
Civilian - Unemployed	274	2.21	2,393	2.18	12,943	2.38
Not in Labor Force	3,650	29.49	35,529	32.37	176,954	32.47

Page 8 of 12


Prepared For: Tim Miller Assoc.

Order #: 963277662

Project Code: 1492188-1

Site: 01

Description	0.00 - 3.00 <i>Radius</i>	Miles %	0.00 - 10.00 Radius	Miles %	0.00 - 20.00 Radius	Miles %
2004 Est. Civ Employed Pop 16+ Class of Worker*	8,454		71,823		350,455	
For-Profit Private Workers		65.55	49,274	68.60	243,423	69.46
Non-Profit Private Workers	857	10.14	6,160	8.58	29,418	8.39
Local Government Workers	1,100	13.01	8,100		31,643	9.03
State Government Workers	351	4.15	2,318	3.23	13,309	3.80
Federal Government Workers	135	1.60	1,035	1.44	7,190	2.05
Self-Emp Workers	454	5.37	4,767	6.64	24,638	7.03
Unpaid Family Workers	14	0.17	168	0.23	833	0.24
2004 Est. Civ Employed Pop 16+ by Occupation*	8,454		71,823		350,455	
Management, Business, and Financial Operations	1,257	14.87	12,727	17.72	60,711	17.32
Professional and Related Occupations	1,955	23.13	17,757	24.72	87,952	25.10
Service	1,351	15.98	8,846	12.32	46,156	13.17
Sales and Office	2,271	26.86	19,088	26.58	89,207	25.45
Farming, Fishing, and Forestry	14	0.17	171	0.24	627	0.18
Construction, Extraction and Maintainance	950	11.24	7,843	10.92	33,600	9.59
Production, Transportation and Material Moving	655	7.75	5,392	7.51	32,202	9.19
2004 Est. Pop 16+ by Occupation Classification*	8,454		71,823		350,455	
Blue Collar	1,605	18.99	13,234	18.43	65,802	18.78
White Collar	5,476	64.77	49,491	68.91	237,472	67.76
Service and Farm	1,372	16.23	9,098	12.67	47,181	13.46
2004 Est. Workers Age 16+, Transportation To Work*	8,320		70,726		347,525	
Drove Alone	6,655	79.99	56,859	80.39	267,655	77.02
Car Pooled	701	8.43	5,898	8.34	32,843	9.45
Public Transportation	570	6.85	3,978	5.62	21,143	6.08
Walked	101	1.21	927	1.31	10,056	2.89
Motorcycle	0	0.00	22	0.03	134	0.04
Bicycle	10	0.12	88	0.12	615	0.18
Other Means	, 35	0.42	204	0.29	1,594	0.46
Worked at Home	247	2.97	2,750	3.89	13,485	3.88
2004 Est. Workers Age 16+ by Travel Time to Work*	8,072		67,976		334,040	
Less than 15 Minutes	1,287	15.94	12,376	18.21	83,726	25.06
15 - 29 Minutes	1,922	23.81	18,166	26.72	94,278	28.22
30 - 44 Minutes	1,510	18.71	13,833	20.35	64,159	19.21
45 - 59 Minutes	1,560	19.33	10,435	15.35	36,826	11.02
60 or more Minutes	1,793	22.21	13,166	19.37	55,050	16.48
2004 Est. Average Travel Time to Work in Minutes*	41.95		38.94		34.72	

Prepared For: Tim Miller Assoc.

Order #: 963277662 Site: 01

Project Code: 1492188-1

Description	0.00 - 3.00 <i>Radius</i>	Miles <u>%</u>	0.00 - 10.00 <i>Radius</i>	Miles <u>%</u>	0.00 - 20.00 Radius	Miles %
2004 Est. Tenure of Occupied Housing Units*	5,639		48,977		248,539	
Owner Occupied	4,597	81.52	41,448	84.63	186,681	75.11
Renter Occupied	1,042	18.48	7,529	15.37	61,858	24.89
2004 Occ Housing Units, Avg Length of Residence	15		15		15	
2004 Est. All Owner-Occupied Housing Values	4,597		41,448		186,681	
Value Less than \$20,000	1	0.02	66	0.16	517	0.28
Value \$20,000 - \$39,999	7	0.15	160	0.39	1,169	0.63
Value \$40,000 - \$59,999	13	0.28	119	0.29	1,353	0.72
Value \$60,000 - \$79,999	12	0.26	62	0.15	1,315	0.70
Value \$80,000 - \$99,999	28	0.61	128	0.31	2,080	1.11
Value \$100,000 - \$149,999	420	9.14	2,087	5.04	13,450	7.20
Value \$150,000 - \$199,999	1,287	28.00	5,744	13.86	28,137	15.07
Value \$200,000 - \$299,999	2,038	44.33	15,840	38.22	63,817	34.19
Value \$300,000 - \$399,999	560	12.18	10,257	24.75	35,103	18.80
Value \$400,000 - \$499,999	132	2.87	3,558	8.58	14,904	7.98
Value \$500,000 - \$749,999	67	1.46	2,307	5.57	13,430	7.19
Value \$750,000 - \$999,999	29	0.63	788	1.90	6,920	3.71
Value \$1,000,000 or more	4	0.09	334	0.81	4,486	2.40
2004 Est. Median All Owner-Occupied Housing Value	\$226,067		\$278,022		\$271,014	
2004 Est. Housing Units by Units in Structure*	5,923		51,931		262,503	
1 Unit Attached	578	9.76	4,697	9.04	17,561	6.69
1 Unit Detached	4,603	77.71	40,474	77.94	178,979	68.18
2 Units	249	4.20	2,022	3.89	16,710	6.37
3 to 19 Units	378	6.38	3,423	6.59	34,266	13.05
20 to 49 Units	91	1.54	597	1.15	4,437	1.69
50 or More Units	5	0.08	258	0.50	6,520	2.48
Mobile Home or Trailer	. 20	0.34	446	0.86	3,931	1.50
Boat, RV, Van, etc.	0	0.00	15	0.03	100	0.04

Prepared For: Tim Miller Assoc.

Order #: 963277662

Project Code: 1492188-1

Site: 01

Trade Area: WOODSTOCK RD. & CONCORD RD. CARMEL, NY, Total

Description	0.00 - 3.00 <i>Radius</i>	Miles %	0.00 - 10.00 <i>Radius</i>	Miles <u>%</u>	0.00 - 20.00 Radius	Miles %
2004 Est. Housing Units by Year Structure Built*	5,923		51,931		262,503	
Housing Unit Built 1999 to present	513	8.66	4,492	8.65	18,379	7.00
Housing Unit Built 1995 to 1998	245	4.14	2,530	4.87	10,839	4.13
Housing Unit Built 1990 to 1994	197	3.33	2,663	5.13	11,752	4.48
Housing Unit Built 1980 to 1989	836	14.11	8,447	16.27	37,018	14.10
Housing Unit Built 1970 to 1979	718	12.12	8,457	16.29	41,604	15.85
Housing Unit Built 1960 to 1969	1,032	17.42	8,928	17.19	44,891	17.10
Housing Unit Built 1950 to 1959	1,072	18.10	6,801	13.10	36,163	13.78
Housing Unit Built 1940 to 1949	628	10.60	3,691	7.11	16,934	6.45
Housing Unit Built 1939 or Earlier	684	11.55	5,923	11.41	44,922	17.11
2004 Est. Median Year Structure Built*	1966		1971		1967	

*In contrast to Claritas Demographic Estimates, "smoothed" data items are Census 2000 tables made consistent with current year estimated and 5 year projected base counts.

Prepared For: Tim Miller Assoc. Project Code: 1492188-1 Order #: 963277662

Site: 01

	Appendix: Area Listing	
Area Name:		
Type: Radius	Reporting Detail: Aggregate	Reporting Level: Block Group
Radius Definition:	·	
WOODSTOCK RD. & CONCORD RD	. CARMEL, NY	Center Point: 41.468280 -73.650450 Circle/Band: 0.00 - 3.00
Area Name:		
Type: Radius	Reporting Detail: Aggregate	Reporting Level: Block Group
Radius Definition:		
WOODSTOCK RD. & CONCORD RD	. CARMEL, NY	Center Point: 41.468280 -73.650450 Circle/Band: 0.00 - 10.00
Area Name:		
Type: Radius	Reporting Detail: Aggregate	Reporting Level: Block Group
Radius Definition:		
WOODSTOCK RD. & CONCORD RD	. CARMEL, NY	Center Point: 41.468280 -73.650450 Circle/Band: 0.00 - 20.00

Prepared For: Tim Miller Assoc.

Project Code: 1492188-1

Order #: 963277662 Site: 01

WOODSTOCK RD. & CONCORD RD. CARMEL, NY, 0.00-3.00 Miles, Total

The population in this area is estimated to change from 15,331 to 16,080, resulting in a growth of 4.9% between 2000 and the current year. Over the next five years, the population is projected to grow by 5.5%.

The population in the United States is estimated to change from 281,421,906 to 292,936,668, resulting in a growth of 4.1% between 2000 and the current year. Over the next five years, the population is projected to grow by 4.8%.

• The current year median age for this population is 37.4, while the average age is 36.5. Five years from now, the median age is projected to be 38.1.

The current year median age for the United States is 36.0, while the average age is 36.9. Five years from now, the median age is projected to be 36.7.

• Of this area's current year estimated population:

92.0% are White Alone, 2.4% are Black or African Am. Alone, 0.2% are Am. Indian and Alaska Nat. Alone, 1.3% are Asian Alone, 0.0% are Nat. Hawaiian and Other Pacific Isl. Alone, 2.7% are Some Other Race, and 1.4% are Two or More Races.

For the entire United States:

73.8% are White Alone, 12.4% are Black or African Am. Alone, 0.9% are Am. Indian and Alaska Nat. Alone, 4.0% are Asian Alone, 0.2% are Nat. Hawaiian and Other Pacific Isl. Alone, 6.1% are Some Other Race, and 2.7% are Two or More Races.

• This area's current estimated Hispanic or Latino population is 8.7%, while the United States current estimated Hispanic or Latino population is 14.0%.

The number of households in this area is estimated to change from 5,333 to 5,639, resulting in an increase of 5.7% between 2000 and the current year. Over the next five years, the number of households is projected to increase by 6.6%.

The number of households in the United States is estimated to change from 105,480,101 to 109,949,228, resulting in an increase of 4.2% between 2000 and the current year. Over the next five years, the number is projected to increase by 5.0%.

• The average household income is estimated to be \$88,758 for the current year, while the average household income for the United States is estimated to be \$63,301 for the same time frame.

The average household income in this area is projected to increase 13.7% over the next five years, from \$88,758 to \$100,937. The United States is projected to have a 13.3% increase in average household income.

• The current year estimated per capita income for this area is \$31,516, compared to an estimate of \$24,092 for the United States as a whole.

Prepared For: Tim Miller Assoc. Project Code: 1492188-1 Order #: 963277662 Site: 01

WOODSTOCK RD. & CONCORD RD. CARMEL, NY, 0.00-3.00 Miles, Total

For this area, 52.6% of the population is estimated to be employed and age 16 and over for the current year. The employment status of this labor force is as follows:

0.0% are in the Armed Forces, 68.3% are employed civilians, 2.2% are unemployed civilians, and 29.5% are not in the labor force.

For the United States, 46.6% of the population is estimated to be employed and age 16 and over for the current year. The employment status of this labor force is as follows:

0.5% are in the Armed Forces, 59.9% are employed civilians, 3.6% are unemployed civilians, and 35.9% are not in the labor force.

• For this area, 52.6% of the population is estimated to be employed and age 16 and over for the current year. The occupational classifications are as follows:

19.0% have occupation type blue collar, 64.8% are white collar, and 16.2% are Service & farm workers.

For the United States, 46.6% of the population is estimated to be employed and age 16 and over for the current year. The occupational classifications are as follows:

24.0% have occupation type blue collar, 60.0% are white collar, and 16.1% are Service & farm workers.

• For the civilian employed population age 16 and over in this area, it is estimated that they are employed in the following occupational categories:

14.9% are in "Management, Business, and Financial Operations", 23.1% are in "Professional and Related Occupations", 16.0% are in "Service", and 26.9% are in "Sales and Office".

0.2% are in "Farming, Fishing, and Forestry", 11.2% are in "Construction, Extraction, and Maintenance", and 7.7% are in "Production, Transportation, and Material Moving".

For the civilian employed population age 16 and over in the United States, it is estimated that they are employed in the following occupational categories:

13.6% are in "Management, Business, and Financial Operations", 20.2% are in "Professional and Related Occupations", 14.8% are in "Service", and 26.7% are in "Sales and Office".

0.7% are in "Farming, Fishing, and Forestry", 9.5% are in "Construction, Extraction, and Maintenance", and 14.5% are in "Production, Transportation, and Material Moving".

Currently, it is estimated that 11.3% of the population age 25 and over in this area had earned a Master's, Professional, or Doctorate Degree and 17.7% had earned a Bachelor's Degree.

In comparison, for the United States, it is estimated that for the population over age 25, 8.9% had earned a Master's, Professional, or Doctorate Degree, while 15.7% had earned a Bachelor's Degree.

Prepared For: Tim Miller Assoc.

Project Code: 1492188-1

Order #: 963277662 Site: 01

WOODSTOCK RD. & CONCORD RD. CARMEL, NY, 0.00-3.00 Miles, Total

Most of the dwellings in this area (81.5%) are estimated to be Owner-Occupied for the current year. For the entire country the majority of the housing units are Owner-Occupied (66.5%).

- The majority of dwellings in this area are estimated to be structures of 1 Unit Detached (77.7%) for the current year. In the United States, the majority of dwellings are estimated to be structures of 1 Unit Detached (60.4%) for the same year.
- The majority of housing units in this area (18.1%) are estimated to have been Housing Unit Built 1950 to 1959 for the current year.

Most of the housing units in the United States (17.4%) are estimated to have been Housing Unit Built 1970 to 1979 for the current year.

Prepared For: Tim Miller Assoc.

Project Code: 1492188-1

Order #: 963277662 Site: 01

WOODSTOCK RD. & CONCORD RD. CARMEL, NY, 0.00-10.00 Miles, Total

The population in this area is estimated to change from 134,970 to 141,755, resulting in a growth of 5.0% between 2000 and the current year. Over the next five years, the population is projected to grow by 5.9%.

The population in the United States is estimated to change from 281,421,906 to 292,936,668, resulting in a growth of 4.1% between 2000 and the current year. Over the next five years, the population is projected to grow by 4.8%.

• The current year median age for this population is 38.6, while the average age is 37.4. Five years from now, the median age is projected to be 39.3.

The current year median age for the United States is 36.0, while the average age is 36.9. Five years from now, the median age is projected to be 36.7.

• Of this area's current year estimated population:

91.6% are White Alone, 2.6% are Black or African Am. Alone, 0.1% are Am. Indian and Alaska Nat. Alone, 2.1% are Asian Alone, 0.0% are Nat. Hawaiian and Other Pacific Isl. Alone, 2.0% are Some Other Race, and 1.5% are Two or More Races.

For the entire United States:

73.8% are White Alone, 12.4% are Black or African Am. Alone, 0.9% are Am. Indian and Alaska Nat. Alone, 4.0% are Asian Alone, 0.2% are Nat. Hawaiian and Other Pacific Isl. Alone, 6.1% are Some Other Race, and 2.7% are Two or More Races.

• This area's current estimated Hispanic or Latino population is 7.5%, while the United States current estimated Hispanic or Latino population is 14.0%.

The number of households in this area is estimated to change from 46,339 to 48,977, resulting in an increase of 5.7% between 2000 and the current year. Over the next five years, the number of households is projected to increase by 6.7%.

The number of households in the United States is estimated to change from 105,480,101 to 109,949,228, resulting in an increase of 4.2% between 2000 and the current year. Over the next five years, the number is projected to increase by 5.0%.

• The average household income is estimated to be \$102,578 for the current year, while the average household income for the United States is estimated to be \$63,301 for the same time frame.

The average household income in this area is projected to increase 15.8% over the next five years, from \$102,578 to \$118,749. The United States is projected to have a 13.3% increase in average household income.

• The current year estimated per capita income for this area is \$35,818, compared to an estimate of \$24,092 for the United States as a whole.

Prepared For: Tim Miller Assoc.

Project Code: 1492188-1

Order #: 963277662 Site: 01

WOODSTOCK RD. & CONCORD RD. CARMEL, NY, 0.00-10.00 Miles, Total

For this area, 50.7% of the population is estimated to be employed and age 16 and over for the current year. The employment status of this labor force is as follows:

0.0% are in the Armed Forces, 65.4% are employed civilians, 2.2% are unemployed civilians, and 32.4% are not in the labor force.

For the United States, 46.6% of the population is estimated to be employed and age 16 and over for the current year. The employment status of this labor force is as follows:

0.5% are in the Armed Forces, 59.9% are employed civilians, 3.6% are unemployed civilians, and 35.9% are not in the labor force.

• For this area, 50.7% of the population is estimated to be employed and age 16 and over for the current year. The occupational classifications are as follows:

18.4% have occupation type blue collar, 68.9% are white collar, and 12.7% are Service & farm workers.

For the United States, 46.6% of the population is estimated to be employed and age 16 and over for the current year. The occupational classifications are as follows:

24.0% have occupation type blue collar, 60.0% are white collar, and 16.1% are Service & farm workers.

• For the civilian employed population age 16 and over in this area, it is estimated that they are employed in the following occupational categories:

17.7% are in "Management, Business, and Financial Operations", 24.7% are in "Professional and Related Occupations", 12.3% are in "Service", and 26.6% are in "Sales and Office".

0.2% are in "Farming, Fishing, and Forestry", 10.9% are in "Construction, Extraction, and Maintenance", and 7.5% are in "Production, Transportation, and Material Moving".

For the civilian employed population age 16 and over in the United States, it is estimated that they are employed in the following occupational categories:

13.6% are in "Management, Business, and Financial Operations", 20.2% are in "Professional and Related Occupations", 14.8% are in "Service", and 26.7% are in "Sales and Office".

0.7% are in "Farming, Fishing, and Forestry", 9.5% are in "Construction, Extraction, and Maintenance", and 14.5% are in "Production, Transportation, and Material Moving".

Currently, it is estimated that 15.0% of the population age 25 and over in this area had earned a Master's, Professional, or Doctorate Degree and 20.8% had earned a Bachelor's Degree.

In comparison, for the United States, it is estimated that for the population over age 25, 8.9% had earned a Master's, Professional, or Doctorate Degree, while 15.7% had earned a Bachelor's Degree.

Prepared For: Tim Miller Assoc.

Project Code: 1492188-1

Order #: 963277662 Site: 01

WOODSTOCK RD. & CONCORD RD. CARMEL, NY, 0.00-10.00 Miles, Total

Most of the dwellings in this area (84.6%) are estimated to be Owner-Occupied for the current year. For the entire country the majority of the housing units are Owner-Occupied (66.5%).

- The majority of dwellings in this area are estimated to be structures of 1 Unit Detached (77.9%) for the current year. In the United States, the majority of dwellings are estimated to be structures of 1 Unit Detached (60.4%) for the same year.
- The majority of housing units in this area (17.2%) are estimated to have been Housing Unit Built 1960 to 1969 for the current year.

Most of the housing units in the United States (17.4%) are estimated to have been Housing Unit Built 1970 to 1979 for the current year.

Prepared For: Tim Miller Assoc.

Project Code: 1492188-1

Order #: 963277662 Site: 01

WOODSTOCK RD. & CONCORD RD. CARMEL, NY, 0.00-20.00 Miles, Total

The population in this area is estimated to change from 679,676 to 708,488, resulting in a growth of 4.2% between 2000 and the current year. Over the next five years, the population is projected to grow by 5.0%.

The population in the United States is estimated to change from 281,421,906 to 292,936,668, resulting in a growth of 4.1% between 2000 and the current year. Over the next five years, the population is projected to grow by 4.8%.

• The current year median age for this population is 37.6, while the average age is 36.9. Five years from now, the median age is projected to be 38.4.

The current year median age for the United States is 36.0, while the average age is 36.9. Five years from now, the median age is projected to be 36.7.

• Of this area's current year estimated population:

84.3% are White Alone, 6.2% are Black or African Am. Alone, 0.2% are Am. Indian and Alaska Nat. Alone, 3.2% are Asian Alone, 0.0% are Nat. Hawaiian and Other Pacific Isl. Alone, 3.8% are Some Other Race, and 2.2% are Two or More Races.

For the entire United States:

73.8% are White Alone, 12.4% are Black or African Am. Alone, 0.9% are Am. Indian and Alaska Nat. Alone, 4.0% are Asian Alone, 0.2% are Nat. Hawaiian and Other Pacific Isl. Alone, 6.1% are Some Other Race, and 2.7% are Two or More Races.

• This area's current estimated Hispanic or Latino population is 10.4%, while the United States current estimated Hispanic or Latino population is 14.0%.

The number of households in this area is estimated to change from 237,360 to 248,539, resulting in an increase of 4.7% between 2000 and the current year. Over the next five years, the number of households is projected to increase by 5.5%.

The number of households in the United States is estimated to change from 105,480,101 to 109,949,228, resulting in an increase of 4.2% between 2000 and the current year. Over the next five years, the number is projected to increase by 5.0%.

• The average household income is estimated to be \$101,005 for the current year, while the average household income for the United States is estimated to be \$63,301 for the same time frame.

The average household income in this area is projected to increase 14.4% over the next five years, from \$101,005 to \$115,568. The United States is projected to have a 13.3% increase in average household income.

• The current year estimated per capita income for this area is \$35,810, compared to an estimate of \$24,092 for the United States as a whole.

Prepared For: Tim Miller Assoc.

Project Code: 1492188-1

WOODSTOCK RD. & CONCORD RD. CARMEL, NY, 0.00-20.00 Miles, Total

• For this area, 49.5% of the population is estimated to be employed and age 16 and over for the current year. The employment status of this labor force is as follows:

0.8% are in the Armed Forces, 64.3% are employed civilians, 2.4% are unemployed civilians, and 32.5% are not in the labor force.

For the United States, 46.6% of the population is estimated to be employed and age 16 and over for the current year. The employment status of this labor force is as follows:

0.5% are in the Armed Forces, 59.9% are employed civilians, 3.6% are unemployed civilians, and 35.9% are not in the labor force.

• For this area, 49.5% of the population is estimated to be employed and age 16 and over for the current year. The occupational classifications are as follows:

18.8% have occupation type blue collar, 67.8% are white collar, and 13.5% are Service & farm workers.

For the United States, 46.6% of the population is estimated to be employed and age 16 and over for the current year. The occupational classifications are as follows:

24.0% have occupation type blue collar, 60.0% are white collar, and 16.1% are Service & farm workers.

• For the civilian employed population age 16 and over in this area, it is estimated that they are employed in the following occupational categories:

17.3% are in "Management, Business, and Financial Operations", 25.1% are in "Professional and Related Occupations", 13.2% are in "Service", and 25.5% are in "Sales and Office".

0.2% are in "Farming, Fishing, and Forestry", 9.6% are in "Construction, Extraction, and Maintenance", and 9.2% are in "Production, Transportation, and Material Moving".

For the civilian employed population age 16 and over in the United States, it is estimated that they are employed in the following occupational categories:

13.6% are in "Management, Business, and Financial Operations", 20.2% are in "Professional and Related Occupations", 14.8% are in "Service", and 26.7% are in "Sales and Office".

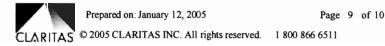
0.7% are in "Farming, Fishing, and Forestry", 9.5% are in "Construction, Extraction, and Maintenance", and 14.5% are in "Production, Transportation, and Material Moving".

Currently, it is estimated that 15.4% of the population age 25 and over in this area had earned a Master's, Professional, or Doctorate Degree and 20.7% had earned a Bachelor's Degree.

In comparison, for the United States, it is estimated that for the population over age 25, 8.9% had earned a Master's, Professional, or Doctorate Degree, while 15.7% had earned a Bachelor's Degree.

Prepared For: Tim Miller Assoc.

Project Code: 1492188-1


Order #: 963277662 Site: 01

WOODSTOCK RD. & CONCORD RD. CARMEL, NY, 0.00-20.00 Miles, Total

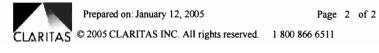
- Most of the dwellings in this area (75.1%) are estimated to be Owner-Occupied for the current year. For the entire country the majority of the housing units are Owner-Occupied (66.5%).
- The majority of dwellings in this area are estimated to be structures of 1 Unit Detached (68.2%) for the current year. In the United States, the majority of dwellings are estimated to be structures of 1 Unit Detached (60.4%) for the same year.
- The majority of housing units in this area (17.1%) are estimated to have been Housing Unit Built 1939 or Earlier for the current year.

Most of the housing units in the United States (17.4%) are estimated to have been Housing Unit Built 1970 to 1979 for the current year.

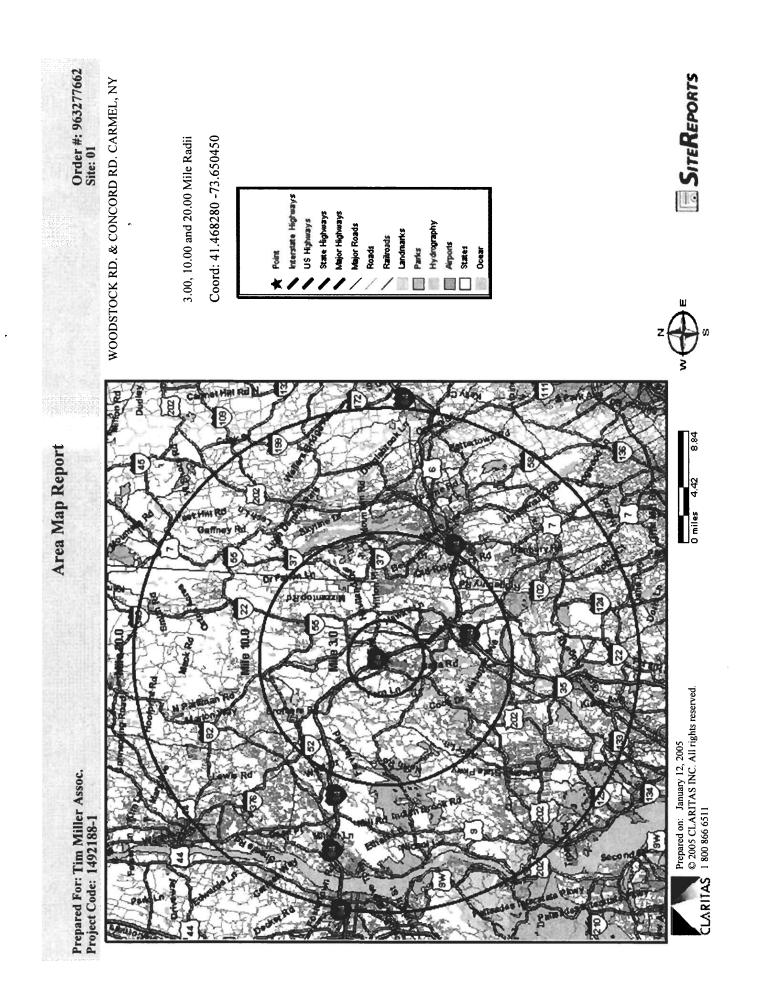
	Executive Summary R	eport
Prepared For: Tim Miller As Project Code: 1492188-1		Order #: 963277662 Site: 01
	Appendix: Area Listi	ng
Area Name:		
Type: Radius	Reporting Detail: Aggregate	Reporting Level: Block Group
Radius Definition:		
WOODSTOCK RD. & CON	CORD RD. CARMEL, NY	Center Point: 41.468280 -73.650450 Circle/Band: 0.00 - 3.00
Area Name:		
Type: Radius	Reporting Detail: Aggregate	Reporting Level: Block Group
Radius Definition:		
WOODSTOCK RD. & CON	CORD RD. CARMEL, NY	Center Point: 41.468280 -73.650450 Circle/Band: 0.00 - 10.00
Area Name:		
Type: Radius	Reporting Detail: Aggregate	Reporting Level: Block Group
Radius Definition:		
WOODSTOCK RD. & CON	CORD RD. CARMEL, NY	Center Point: 41.468280 -73.650450 Circle/Band: 0.00 - 20.00

Retail Trade Potential Report

Prepared For: Tim Miller Assoc.


Order #: 963277662 Site: 01

Project Code: 1492188-1


Description	0.00 - 3.00 Radius	Miles %	0.00 - 10.00 <i>Radius</i>	Miles %	0.00 - 20.00 Radius	Miles %
Total Retail Sales	\$134,960,372		\$1,611,079,767		\$9,533,497,032	
Apparel and Accessory Stores	\$811,420	0.60	\$61,647,043	3.83	\$498,121,621	5.22
Automotive Dealers	\$40,126,383	29.73	\$382,825,909	23.76	\$2,017,793,414	21.17
Automotive and Home Supply Stores	\$2,884,093	2.14	\$21,851,723	1.36	\$98,203,322	1.03
Drug and Proprietary Stores	\$6,654,597	4.93	\$74,127,658	4.60	\$439,330,361	4.61
Eating and Drinking Places	\$8,958,867	6.64	\$122,867,755	7.63	\$782,603,322	8.21
Food Stores	\$23,750,760	17.60	\$259,957,109	16.14	\$1,526,382,904	16.01
Furniture and Home Furnishings Stores	\$4,173,529	3.09	\$43,228,382	2.68	\$234,596,742	2.46
Home Appliance, Radio, and T.V. Stores	\$3,845,659	2.85	\$40,046,383	2.49	\$215,979,602	2.27
Gasoline Service Stations	\$12,394,314	9.18	\$105,524,109	6.55	\$516,242,839	5.42
General Merchandise	\$9,328,977	6.91	\$158,680,948	9.85	\$1,031,056,812	10.82
Department Stores (Including Leased Depts.)	\$6,068,699	4.50	\$102,474,096	6.36	\$671,563,914	7.04
Hardware, Lumber and Garden Stores	\$8,915,044	6.61	\$98,465,852	6.11	\$579,669,049	6.08

C. C. C. La P., C. C. Constant devices of provide strained provide differences of the strained stra	Retail Trade Potential Re	port
Prepared For: Tim Miller Assoc. Project Code: 1492188-1		Order #: 963277662 Site: 01
	Appendix: Area Listing	
Area Name:		
Type: Radius	Reporting Detail: Aggregate	Reporting Level: Block Group
Radius Definition:	·	
WOODSTOCK RD. & CONCORE	Center Point: 41.468280 -73.650450 Circle/Band: 0.00 - 3.00	
Area Name:		
Type: Radius	Reporting Detail: Aggregate	Reporting Level: Block Group
Radius Definition:		·
WOODSTOCK RD. & CONCORE	ORD. CARMEL, NY	Center Point: 41.468280 -73.650450 Circle/Band: 0.00 - 10.00
Area Name:		
Type: Radius	Reporting Detail: Aggregate	Reporting Level: Block Group
Radius Definition:		
WOODSTOCK RD. & CONCORI	ORD. CARMEL, NY	Center Point: 41.468280 -73.650450 Circle/Band: 0.00 - 20.00

Understanding Your Claritas Report

Claritas is the nation's most comprehensive source of updated marketing information about American consumers and businesses. Your Claritas data is based on a number of sources, including the Claritas Demographic Update, our annual release of current-year estimates and five-year projections of U.S. Census data. This Update relies on the decennial census for an accurate starting point and a variety of sources indicating change following the census.

Consumer Expenditure data is drawn from Consumer Buying Power, our database of estimated expenditures based on the Bureau of Labor Statistics' Consumer Expenditure Survey.

Business data comes from Business-Facts, Claritas' database of over 12 million business and professional records. Claritas' partner, infoUSA, collects Business-Facts data.

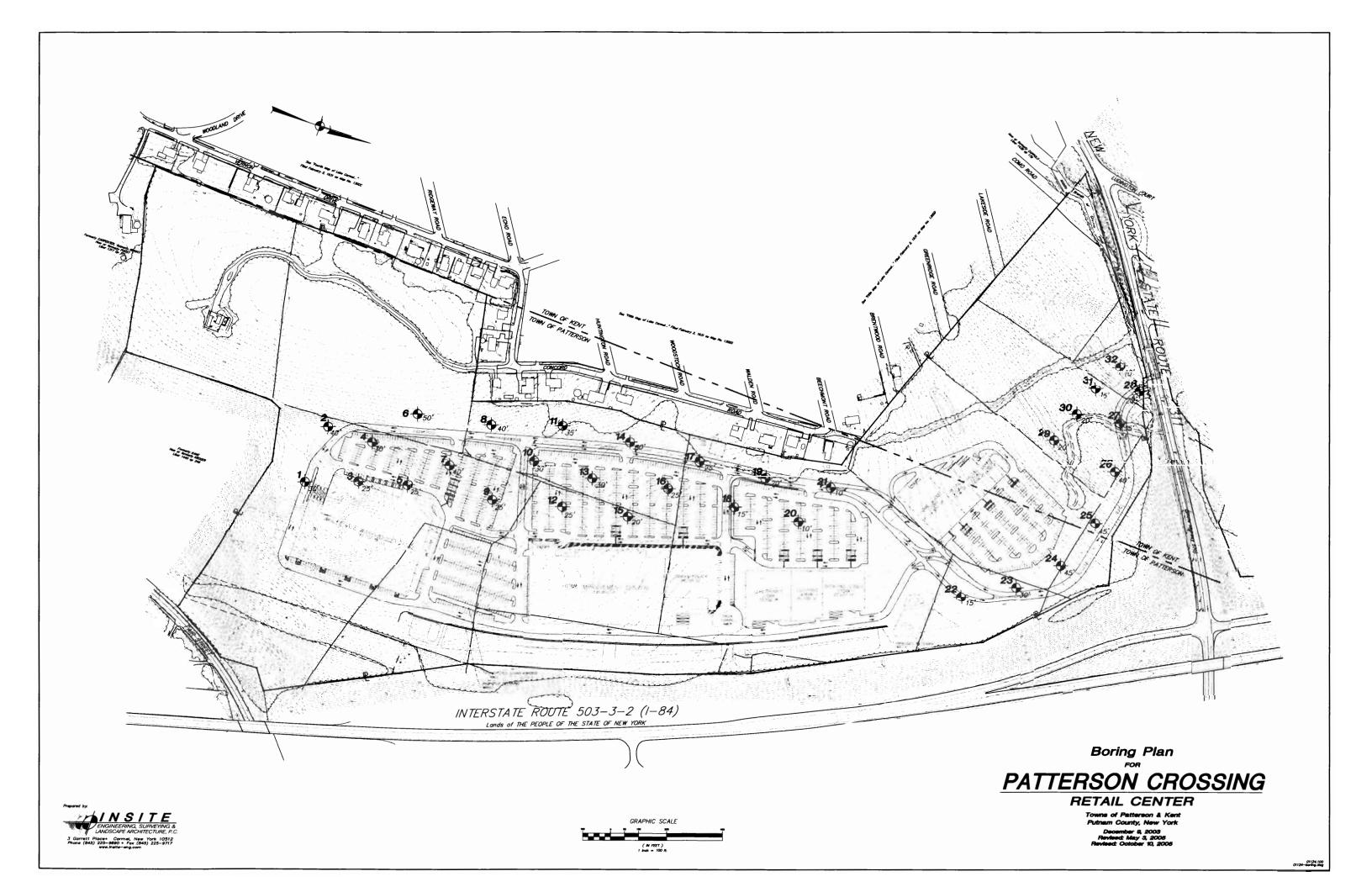
PRIZM NE is Claritas' premier segmentation system. PRIZM NE was created by a proprietary method developed by Claritas statisticians called Multivariate Divisive Partitioning (MDP). MDP borrows and extends a tree partitioning method that creates the segments based on demographics that matter most to households' behaviors.

Resources

Claritas provides a number of resources to help you understand your reports and data. They are available online at <u>www.claritas.com/resources</u>.

Resources include:

- A comprehensive glossary of the terms used in your reports
- Claritas Demographic Update methodology
- Consumer Buying Power methodology
- Business-Facts methodology
- PRIZM NE methodology summary
- White papers concerning our data and methodology


For More Information

Contact Claritas at:

- Sales, 800-234-5973
- Support, 800-866-6511

Appendix D

BORING LOGS AND BORING LOCATIONS

DATE STARTE		3/29/2004				Cor	necticut	Test B	orings, IIC	SHEET					
ATE FINISHE	ATE FINISHED 3/29/2004 EIGHT OF HAMMER 140 Lbs.					Box 69 - S			PROJECT No		C04116				
AMMER FALL		140 30''	LDS.			(GEOTECHNIC		NVIRONMENTAL DRILLING	LOCATION		Rt. 311 erson,			
ROUND WAT			4					(203) FAX	888-3857 (203) 888-0655	OFFSET	i att	c13011,	14.1		
	3/29/2004						E	SPECIALL	Y COMPILED FOR	GROUND ELEVATIO	N N				
ME	0 Hou					Pa			g Development Co.,LLC	HOLE No.	B-2	2			
EPTH	Dry	r						1699 R	t. 6 , Suite 1	CASING	SS	6A	5''		
MPLER Dia.	(Type/O.D			2" / 1-				Carme	l, NY 10512	SAMPLER					
PE OF RIG		C	ME 5	5 - Tra	ack			,		CORE BARREL					
	SAMPLE	SAMP	BL		R 6 INCH MPLER	ES	DENSITY OR	PROFILE CHANGE	FIELD IDENTIFICATION	OF SOILS	S	AMPLE	BORE / WEL		
о Р W Т	DEPTH (FEET)	TYPE					CONSIST MOISTURE	DEPTH ELEV	DEMARKS			DENIDEO	NOT TO SCALL		
з ⁵ Н			0-6	6-12	12-18	18-24			REMARKS		NO.	PEN REC.	(NOT TO SCALE		
-5 _ -10 _								6' 7'6''	OLIVE BROWN SILTY SAND, GRAVI WEATHERED ROCK REFUSAL	EL.					
-15 _ -20 _									OFFSET 10' SOUTH ENCOUNTERED AT 6'6'') REFUSAL					
-25 _															
-30 _															
-35 _															
-40 _															
-45 _															
-50 _	-								- 10.00%						
			Pro	oporti	ons us	sed: ti	race = 0-10	J‰, little	e = 10-20%, some = 20-35%	, and = 35-50%					
RILLER		A.W							SAMPLE TYPE C = CORED	COHESIONLESS SO 0 - 4 VERY LOOSE	1	COHESIVE	1 SOFT		
ELPER		J.C.							W = Washed SS = Split Spoon Up = Undis ture ed piston:	4 - 10 LOOSE 10-30 MEDIUM		2-4 SOF1 4-8 MEDI	г IUM		
DILS ENGINE	ER								up = undistureed piston: TP = test pit Ut = undisturbed thinn/aali	30-50 DENSE 50+ VERY DENSE		8 15 STIFF 15-30 VEF 30+ HARD	RY STIFF		
THE T REAL OF THE REAL	PECTOR											JUT HARD	•		

							S	oil Sa	mpling Log				
DATE STAR	TED		/2004			Cor	necticut	Test R	orings, IIC	SHEET	1 OF 1		
DATE FINISH			/2004	ŀ			Box 69 - S			PROJECT No	C04116		
WEIGHT OF			Lbs.					-	NVIRONMENTAL DRILLING	LOCATION Rt.			
HAMMER FA		30"							888-3857 (203) 888-0655		Patterson,	NY	
GROUND WATER OBSERVATION										OFFSET GROUND ELEVATION			
DATE 3/29/2004 TIME 0 Hours						D			Y COMPILED FOR g Development Co.,LLC	HOLE No.	B-4		
DEPTH	6'-6					1.0			t. 6 , Suite 1	CASING	SSA	5''	
SAMPLER Dia (Type/O.D /I D.) SS 2" / 1-3/8"									I, NY 10512	SAMPLER	OON	0	
TYPE OF RIG		,		5 - Tra		1		ounno		CORE BARREL			
C D A	SAMPLE		В	LOWS PE	R 6 INCH	ES	DENSITY OR	PROFILE					
S O P	DEPTH	SAMP TYPE		ON SA	MPLER		CONSIST	CHANGE DEPTH	FIELD IDENTIFICATION (JF SUILS	SAMPLE	BORE / WELL	
N W T G H	(FEET)		0-6	6-12	12-18	18-24	MOISTURE	ELEV	REMARKS		NO. PEN REC.	(NOT TO SCALE)	
								6''	DARK BROWN SILTY SAND, ROOTS BROWN OLIVE SILTY SAND, GRAVE		+	(deres)	
									BROWN OLIVE SILLY SAND, GRAVE				
-5 _									"SAME" W/ COBBLESTONES				
-10								10'					
-10 _								10	GREY SILTY SAND, GRAVEL, MIXED	W/ WEATHERED			
									ROCK				
-15 _													
									GREY SILTY SAND & WEATHERED R	OCK			
-20 _													
-25			5										
-20 _													
			: •					27'	255110.41				
									REFUSAL				
-30 _													
-35 _													
-40					1								
-45 _													
-50 _								1					
		I	-0				$\frac{1}{1000 - 0.40}$	10/ 1:++1	1 = 10.20% come = 20.25%	and = 25.500/		<u> </u>	
				υροπι		seu. t		570, IITTIE	e = 10-20%, some = 20-35%	, anu - 35-50%			
DRILLER		A.W							SAMPLE TYPE C = CORED	COHESIONLESS SOILS 0 - 4 VERY LOOSE	0 - 2 VER	SOILS Y SOFT	
HELPER		J.C.							W = WASHED SS = SPLIT SPOON	4 - 10 LOOSE 10-30 MEDIUM 20 50 DENSE	2-4 SOF 4-8 MED	T MUM	
SOILS ENGI	NEER								UP = UNDIST URBED PISTON TP = TEST PI T UT = UNDISTURBED THINWALL	30-50 DENSE 50+ VERY DENSE	8 15 STIF 15-30 VEF 30+ HARE	RY STIFF	
DRILLING IN		F F 6		070010		00 5 41/5					C04116		
NOTR	ESPONSIBL	E FOR	SAMPLE	STURAG	E AFTER	30 DAYS				FILE	004110		

							S	oil Sa	mpling Log			
DATE STARTED 3/29/2004			Con	nacticut	Tost R	orings, LLC	SHEET	1 OF 1				
DATE FINISH	DATE FINISHED 3/29/2004						Box 69 - S			PROJECT No	C04116	
WEIGHT OF	HAMMER	140	Lbs.					•	ENVIRONMENTAL DRILLING	LOCATION	Rt. 311	
HAMMER FA	LL	30"					SECTECHNI	(203)) 888-3857 (203) 888-0655		Patterson,	NY
GROUND W			N							OFFSET		
DATE	3/29/2								Y COMPILED FOR	GROUND ELEVATION		
TIME	0 Hoi					Pa			g Development Co.,LLC	HOLE No.	B-5	
DEPTH	Dry	/							t. 6 , Suite 1	CASING	SSA	5"
SAMPLER D	ia. (Type/O E			2" / 1-				Carme	el, NY 10512	SAMPLER		
TYPE OF RIC	3	С	ME 5	5 - Tra	ack			,	1	CORE BARREL		
C D A L E S O P	SAMPLE	SAMP	BL	LOWS PE		ES	DENSITY OR	PROFILE		DF SOILS	SAMPLE	BORE / WELL
NW T	DEPTH (FEET)	TYPE			MPLER		CONSIST MOISTURE	DEPTH				
N W T G H	(,		0-6	6-12	12-18	18-24		ELEV.	REMARKS		NO. PEN REC.	(NOT TO SCALE)
								4"	DARK BROWN SILTY SAND. ROOTS BROWN SILTY SAND, GRAVEL		+	
								Δ'			_	
-5 _								5'6''	WEATHERED ROCK			
									REFUSAL		+	
-10												
-10												
-15												
									OFFSET 6' SOUTH AND ENCOUNTER AT 5'	ED REFUSAL		
-20												
_												
-25 _												
-30 _												
							-					
-35 _												
-40 _												
-45 _												
-50 _												
I		L I	Pr	oporti	ons us	sed: ti	race = 0-10)%. little	e = 10-20%, some = 20-35%	and = 35-50%		L
<u></u>				50010	u					_		0000
DRILLER		A.W							SAMPLE TYPE C = CORED W = WASHED	COHESIONLESS SOIL 0 - 4 VERY LOOSE 4 - 10 LOOSE	S COHESIVE 0 - 2 VER 2 - 4 SOF	Y SOFT
HELPER		J.C.							W = WASHED SS = SPLIT SPOON UP = UNDISTURBED PISTON	10-30 MEDIUM 30-50 DENSE	4 - 8 MED 8 15 STIF	IUM
SOILS ENGIN	NEER								TP = TEST PIT UT = UNDISTURBED THINWALL	50+ VERY DENSE	15-30 VEF 30+ HARE	RY STIFF
DRILLING IN											C04116	·
NOT R	ESPONSIBL	E FOR S	SAMPLE	STORAGI	E AFTER	30 DAYS				FILE	004110	

					S	oil Sa	mpling Log				
DATE STARTED	3/29/20			Cor	necticut	Test B	orings, LLC	SHEET	1 OF 1		
DATE FINISHED	3/29/200				Box 69 - S			PROJECT No	C04116		
WEIGHT OF HAMMER	140 Lbs	5.				-	NVIRONMENTAL DRILLING	LOCATION	Rt. 311		
HAMMER FALL GROUND WATER OBSI	30"					(203) FAX (888-3857 (203) 888-0655	OFFSET	Patterson,	NY	
DATE 3/29/2					E		Y COMPILED FOR	GROUND ELEVATION			
TIME 0 Ho				Pa			Development Co., LLC	HOLE No.	B-6		
DEPTH 4'-(t. 6 , Suite 1	CASING	SSA	5"	
SAMPLER Dia (Type/O.		S 2" / 1-	-3/8''				I, NY 10512	SAMPLER			
TYPE OF RIG	CME	55 - Tra	ack					CORE BARREL			
с _в Аь е SAMPLE	0.000	BLOWS PE		ES	DENSITY OR	PROFILE	FIELD IDENTIFICATION O		SAMPLE	BORE / WELL	
SO P DEPTH	SAMP TYPE	ON SA	MPLER		CONSIST MOISTURE	CHANGE DEPTH		500120		BORE / WELL	
G S H (FEET)	0-6	6-12	12-18	18-24	MOISTORE	ELEV	REMARKS		NO. PEN REC.	(NOT TO SCALE)	
-5 _ -10 _ -15 _ -20 _ -25 _ -30 _ -35 _ -40 _ -45 _						9'	DARK BROWN SILTY SAND, ROOTS BROWN OLIVE SILTY SAND, GRAVEL FRAGMENTS OF WEATHERED ROCK WEATHERED ROCK MIXED W/ SOIL REFUSAL OFFSET 10' NORTH ENCOUNTERED OFFSET 10' NORTH ENCOUNTERED	REFUSAL AT 8'			
-50 _											
		Proporti	ons us	sed: t	race = 0-10	0%, little	e = 10-20%, some = 20-35%,	and = 35-50%			
DRILLER HELPER SOILS ENGINEER DRILLING INSPECTOR NOT RESPONSIB	A.W. J.C.	LE STORAGI	E AFTER	30 Days			SAMPLE TYPE C = CORED W = WASHED SS = SPLIT SPOON UP = UNDISTURBED PISTON TP = TEST PIT UT = UNDISTURBED THINWALL	COHESIONLESS SOIL: 0 - 4 VERY LOOSE 4 - 10 LOOSE 10-30 MEDIUM 30-50 DENSE 50+ VERY DENSE FILE	S COHESIVE 0 - 2 VER 2 - 4 SOF 4 - 8 MED 8 15 STIF 15-30 VEF 30+ HARD	Y SOFT T HUM F RY STIFF	

DATE STARTE	D		/2004			Con			mpling Log orings, ուշ	SHEET	-	OF 1	
ATE FINISHEI			/2004				Box 69 - S			PROJECT No		4116	
EIGHT OF HA		140	Lbs.						INVIRONMENTAL DRILLING	LOCATION		Rt. 311	
AMMER FALL		30"						(203)	888-3857 (203) 888-0655	OFFSET	Patt	erson,	NY
	3/29/2		N						· · ·	GROUND ELEVATIO			
ME	0 Hou					Pa			Y COMPILED FOR Development Co., LLC	HOLE No.	B-7	,	
EPTH	Dry					i a			t. 6 , Suite 1	CASING	SS		5''
MPLER Dia			SS	2" / 1-	3/8"				I, NY 10512	SAMPLER			0
PE OF RIG		С		5 - Tra						CORE BARREL			
B D	SAMPLE	SAMP	BL	OWS PE		ES	DENSITY OR	PROFILE CHANGE	FIELD IDENTIFICATION	OF SOILS	s	AMPLE	BORE / WEL
O P	DEPTH (FEET)	TYPE		ON SA	MPLER		CONSIST MOISTURE	DEPTH					
^S Н			0-6	6-12	12-18	18-24		ELEV.	REMARKS		NO.	PEN REC.	(NOT TO SCAL
								10'' 1'6''	DARK BROWN SILTY SAND, ROOTS RUST ORANGE SILTY SAND, GRAV				
									REFUSAL		1		and the second
-5													
-5 -													
-10 _													
45													
-15 _													
									OFFSET 5' SOUTH AND ENCOUNTE AT 1'6"	RED REFUSAL			
-20 _													
-25 _													
-30 _													
_													
-35													
-40													
-45 _													
=													
-50 _													
		<u> </u>	Pr	oporti	ons us	sed: ti	race = 0-10	D%, little	e = 10-20%, some = 20-35%	6, and = 35-50%			
		A 187						,	SAMPLE TYPE	COHESIONLESS SOI	15	COHESIVE	SOILS
RILLER		A.W J.C.							C = CORED W = WASHED	0 - 4 VERY LOOSE 4 - 10 LOOSE		0-2 VER 2-4 SOF	Y SOFT T
	- 0	0.0.							SS = SPLIT SPOON UP = UNDISTURBED PISTON	10-30 MEDIUM 30-50 DENSE		4 - 8 MED 8 15 STIF 15-30 VEF	IUM
									TP = TEST PIT UT = UNDISTURBED THINWALL	50+ VERY DENSE		15-30 VEF 30+ HARE	KY STIFF)
RILLING INSP	COLOR										100	4116	

							S	oil Sa	mpling Log			
DATE STAR	TED	3/29	/2004			Con	nocticut	Tost R	orings, LLC	SHEET	1 OF 1	
DATE FINIS	HED	3/29	/2004				Box 69 - 5			PROJECT No	C04116	
WEIGHT OF	HAMMER	140	Lbs.					•	NVIRONMENTAL DRILLING	LOCATION	Rt. 311	
HAMMER FA		30"						(203)	888-3857 (203) 888-0655		Patterson,	NY
GROUND W			4							OFFSET		
DATE	3/29/2								Y COMPILED FOR	GROUND ELEVATION		
TIME	0 Hoi					Pa			Development Co., LLC	HOLE No.	B-8	
DEPTH	Dŋ								t. 6 , Suite 1	CASING	SSA	5''
SAMPLER D				2" / 1-				Carme	I, NY 10512	SAMPLER		
TYPE OF RI	G	CI	ME 5	5 - Tra	ack					CORE BARREL	,	
CBD ALE SOP	SAMPLE	SAMP	BL		R 6 INCH MPLER	ES	DENSITY OR	PROFILE	FIELD IDENTIFICATION C	OF SOILS	SAMPLE	BORE / WELL
N T	DEPTH (FEET)	TYPE					CONSIST MOISTURE	DEPTH				
с ^s Н			0-6	6-12	12-18	18-24		ELEV 8''	REMARKS		NO. PEN REC.	(NOT TO SCALE)
-5 _								8'	BROWN SILTY SAND, GRAVEL, COB FRAGMENTS OF ROCK	BLESTONES		
-10 _									REFUSAL			
-15 _									OFFSET 3' NORTH ENCOUNTERED R	EFUSAL AT 1'		
-25 _												
-30 _												
-35 _												
-40 _												
-45 _												
-50 _			Dr	onorti			race = 0.10		e = 10-20%, some = 20-35%	and = 35.50%		
				υμοιτι		seu. I		0 70, IILIE	= 10-20 %, SUITE - 20-35%	, anu - 55-50%		
DRILLER HELPER SOILS ENGI DRILLING IN		A.W J.C.							SAMPLE TYPE C = CORED W = WASHED SS = SPLIT SPOON UP = UNDISTURBED PISTON TP = TEST PIT UT = UNDISTURBED THINWALL	COHESIONLESS SOILS 0 - 4 VERY LOOSE 4 - 10 LOOSE 10-30 MEDIUM 30-50 DENSE 50+ VERY DENSE	0 - 2 VER 2 - 4 SOF 4 - 8 MED 8 15 STIF 15-30 VEF 30+ HARE	Y SOFT T IUM F R Y S TIFF
	RESPONSIBL	E FOR S	AMPLE	STORAGI	e after	30 DAYS				FILE	C04116	

							S	oil Sa	mpling Log			
DATE START	ΓED		/2004			Cor	necticut	Test R	orings, LLC	SHEET	1 OF 1	
DATE FINISH	HED		/2004				Box 69 - S			PROJECT No	C04116	
WEIGHT OF			Lbs.					-	NVIRONMENTAL DRILLING	LOCATION	Rt. 311	
HAMMER FA		30"						(203) FAX	888-3857 (203) 888-0655		Patterson,	NY
GROUND W			N			-				OFFSET		
DATE	3/29/2					De			Y COMPILED FOR	GROUND ELEVATION	D 10	
TIME	0 Hoi 15'-(Pa			g Development Co., LLC		B-10	5"
			00	211/4	2/011				t. 6 , Suite 1	CASING	SSA	5
SAMPLER Di				2'' / 1- 5 - Tra				Carme	I, NY 10512	CORE BARREL		
C B D					R 6 INCH			PROFILE		CORE BARREL		
AL E SO P	SAMPLE DEPTH	SAMP	BL		MPLER	E9	DENSITY OR CONSIST	CHANGE	FIELD IDENTIFICATION (DF SOILS	SAMPLE	BORE / WELL
NW T G ^S H	(FEET)	TYPE	0-6	6-12	12-18	18-24	MOISTURE	DEPTH ELEV.	REMARKS		NO. PEN REC.	(NOT TO SCALE)
		$\left \right $		0.12	12 10	10 24		1'6''	DARK BROWN SILTY SAND			
-5 _ -10 _									DLIVE BROWN SILTY SAND, GRAVE			
-15 _								15'	OLIVE GREY SILTY SAND MIXED W/ ROCK	WEATHERED		
-20 _								18'	REFUSAL			
-25 _												
-30 _												
-35 _												
-40 _												
-45 _												
-50 _												
			Pro	oportio	ons us	sed: t	race = 0-10)%, little	e = 10-20%, some = 20-35%	, and = 35-50%		
DRILLER		A.W	n) 1#11						SAMPLE TYPE C = CORED	COHESIONLESS SOILS 0 - 4 VERY LOOSE	COHESIVE	SOILS Y SOFT
HELPER.		J.C.							W = WASHED SS = SPLIT SPOON	4 - 10 LOOSE 10-30 MEDIUM	0-2 VER 2-4 SOF 4-8 MED	IUM
SOILS ENGIN	NEER								UP = UNDISTURBED PISTON TP = TEST PIT	30-50 DENSE 50+ VERY DENSE	8 15 STIF 15-30 VEF	F RY STIFF
ORILLING IN									UT = UNDISTURBED THINWALL		30+ HARD)
NOT R	ESPONSIBL	E FOR S	SAMPLE	STORAGE	AFTER	30 DAYS				FILE	C04116	

							S	oil Sa	mpling Log			
DATE START	TED	3/29	/2004						orings, LLC	SHEET	1 OF 1	·······
DATE FINISH	HED	3/29	/2004				Box 69 - S			PROJECT No	C04116	
WEIGHT OF	HAMMER	140	Lbs.							LOCATION	Rt. 311	
HAMMER FA	LL	30"							888-3857 (203) 888-0655		Patterson,	NY
GROUND W			N					FAX ((203) 888-0655	OFFSET		
DATE	3/29/2								Y COMPILED FOR	GROUND ELEVATION		
TIME	0 Hoi					Pa			p Development Co., LLC	HOLE No.	B-11	
DEPTH	7'-0	11							t. 6 , Suite 1	CASING	SSA	5''
SAMPLER Di	ia. (Type/O.D			2" / 1-				Carme	I, NY 10512	SAMPLER		
TYPE OF RIC	G	C	ME 5	5 - Tra	ack					CORE BARREL		
CBD ALE SOP IWT GH	SAMPLE	SAMP	BL		R 6 INCH	ES	DENSITY OR	PROFILE CHANGE	FIELD IDENTIFICATION C	OF SOILS	SAMPLE	BORE / WELL
N P	DEPTH (FEET)	TYPE		ON SA	MPLER		CONSIST MOISTURE	DEPTH				
с ^S Н	(1 = 1)		0-6	6-12	12-18	18-24	MOIOTOILE	ELEV	REMARKS		NO PEN REC.	(NOT TO SCALE)
								4"	DARK BROWN SILTY SAND, ROOTS BROWN OLIVE SILTY SAND		+	
									BROWN OLIVE SILTY SAND			
-5 _									"SAME" W/ GRAVEL, COBBLESTONE	ES, FRAGMENTS		
									OF ROCK			
												25
-10 _												
								12'				
								1.6.	BROWN OLIVE SILTY SAND MIXED W	// WEATHERED	-	
									ROCK			
-15 _												
								18'				
-20 _									REFUSAL			
-25 _												
-30												
-30 _												
25												
-35 _												
40												
-40 _												
-45												
-40 -												
50												
-50 _												
		L	Pr	oporti		sed t	race = 0-10)% little	e = 10-20%, some = 20-35%,	and = 35-50%		
				Sporti		ti						
DRILLER		A.W							SAMPLE TYPE C = CORED	COHESIONLESS SOILS	0-2 VER	Y SOFT
HELPER		J.C.							W = WASHED SS = SPLIT SPOON	4 - 10 LOOSE 10-30 MEDIUM	2 - 4 SOF 4 - 8 MED	UM
SOILS ENGI	NEER								UP = UNDISTURBED PISTON TP = TEST PIT UT = UNDIST URBED THINWALL	30-50 DENSE 50+ VERY DENSE	8 15 STIF 15-30 VEF 30+ HARE	RYSTIFF
DRILLING IN		ti gate e										,
NOT R	ESPONSIBL	E FOR S	SAMPLE	STORAGI	E AFTER	30 DAYS				FILE	C04116	

							S	oil Sa	mpling Log			
DATE START	ED		/2004			Cor	necticut	Test R	orings, LLC	SHEET	1 OF 1	
DATE FINISH			/2004				Box 69 - S			PROJECT No	C04116	
WEIGHT OF H			Lbs.					-	NVIRONMENTAL DRILLING	LOCATION	Rt. 311	
HAMMER FAL		30"						(203) FAX ⁻ (888-3857 203) 888-0655	055057	Patterson,	NY
GROUND WA	3/29/2		N							OFFSET GROUND ELEVATION		
TIME	0 Hou					Da			Y COMPILED FOR Development Co., LLC	HOLE No.	B-13	
DEPTH	Dry					Fa			t. 6, Suite 1	CASING	SSA	5''
SAMPLER Dia			SS	2" / 1-	3/8"				I, NY 10512	SAMPLER	JUA	0
TYPE OF RIG				5 - Tra		1		Carme	1, 141 10312	CORE BARREL		
				LOWS PE		ES		PROFILE			1	
C D A L E S O P	SAMPLE DEPTH	SAMP TYPE			MPLER	20	DENSITY OR CONSIST	CHANGE DEPTH	FIELD IDENTIFICATION C	OF SOILS	SAMPLE	BORE / WELL
чw т gs н	(FEET)	ITPE	0-6	6-12	12-18	18-24	MOISTURE	ELEV	REMARKS		NO. PEN REC.	(NOT TO SCALE)
									DARK BROWN SILTY SAND, ROOTS			
									BROWN SILTY SAND & WEATHERED	ROCK		
									OLIVE BROWN SILTY SAND & WEAT	HERED ROCK		
-5 _												
									BROWN SILTY SAND & WEATHERED	POCK		
									BROWN SILTT SAND & WEATHERED	RUCK		
-10 _												
								13'				
-15									REFUSAL			
-15_												
-20												
-25 _												
-30 _												
25												
-35 _												
-40												
-												
-45 _												
-50 _												
									- 10 000/ 00 050/	and - 05 500/		
			Pr	oporti	ons us	sea: ti	race = $0-10$	J%, IITTIE	e = 10-20%, some = 20-35%,	and = 35-50%		
DRILLER		A.W	*						SAMPLE TYPE C = CORED	COHESIONLESS SOIL 0 - 4 VERY LOOSE	S COHESIVE 0 - 2 VER	SOILS Y SOFT
HELPER		J.C.							W = WASHED SS = SPLIT SPOON	4 - 10 LOOSE 10-30 MEDIUM	2-4 SOF 4-8 MED	t IUM
SOILS ENGIN	EER								UP = UNDISTURBED PISTON TP = TEST PIT	30-50 DENSE 50+ VERY DENSE	8 15 STIF 15-30 VEF	F RY STIFF
DRILLING INS									UT = UNDISTURBED THINWALL		30+ HARD	J
NOT RE	ESPONSIBL	£ FOR S	SAMPLE	STORAG	e after	30 DAYS				FILE	C04116	

						S	oil Sa	mpling Log			
DATE STARTED		29/20			Cor	necticut	Test B	orings, LLC	SHEET	1 OF 1	
DATE FINISHED		29/20				Box 69 - S			PROJECT No	C04116	
WEIGHT OF HAMM		0 Lbs	S.				-	NVIRONMENTAL DRILLING	LOCATION	Rt. 311	
HAMMER FALL GROUND WATER (30				-		(203) FAX ⁻ (888-3857 (203) 888-0655	OFFSET	Patterson,	NY
	29/2004					E		Y COMPILED FOR	GROUND ELEVATION		
	Hours				Pa			J Development Co., LLC	HOLE No	B-14	
	Dry				10			t. 6 , Suite 1	CASING	SSA	5"
SAMPLER Dia (Typ		S	S 2" / 1	-3/8"	1			I, NY 10512	SAMPLER	00/1	0
TYPE OF RIG			55 - Tr		1			,	CORE BARREL		
C B D A L E SAM S O P DEF			BLOWS PE		IES	DENSITY OR	PROFILE			SAMPLE	BORE / WELL
			ON SA	MPLER		CONSIST	CHANGE DEPTH	FIELD IDENTIFICATION (JF SUILS	SAWPLE	BORE / WELL
NW T (FE	ET)	0-1	6 6-12	12-18	18-24	MOISTURE	ELEV	REMARKS		NO PEN REC	(NOT TO SCALE)
							1'	DARK BROWN SILTY SAND, ROOTS		+	
							-	BROWN SILTY SAND, ROOTS		+	
_								OLIVE BROWN SILTY SAND & WEAT	HERED ROCK		
-5 _											
								BROWN SILTY SAND & WEATHERED	ROCK		
-10											
_							11'				
								REFUSAL			
-15 _											
-20 _											
-25											
-23 _											
-30 _											
-35 _											
		1									
-40 _											
-45											
-50 _											
			Proporti	ons u	sed: t	race = 0-10	0%, little	e = 10-20%, some = 20-35%	, and = 35-50%		
	Α.	N.						SAMPLE TYPE C = CORED	COHESIONLESS SOILS 0 - 4 VERY LOOSE	COHESIVE	SOILS
driller Hel p er	J.(C = CORED W = WASHED SS = SPLIT SPOON	0 - 4 VERYLOOSE 4 - 10 LOOSE 10-30 MEDIUM	0-2 VER 2-4 SOF 4-8 MED	T
SOILS ENGINEER								UP = UNDISTURBED PISTON TP = TEST PIT	30-50 DENSE 50+ VERY DENSE	8 15 STIF 15-30 VEF	F RY STIFF
DRILLING INSPECT	OR							UT = UNDISTURBED THINWALL		30+ HARE)
NOT RESPO		r samp	LE STORAG	E AFTER	30 DAYS				FILE	C04116	

							S	oil Sa	mpling Log			
DATE STAR	TED	3/29	/2004			Con	necticut	Tost R	orings, LLC	SHEET	1 OF 1	
DATE FINIS	HED	3/29	/2004				Box 69 - S			PROJECT No	C04116	
WEIGHT OF	HAMMER	140	Lbs.					-	NVIRONMENTAL DRILLING	LOCATION	Rt. 311	
HAMMER FA		30"							888-3857 (203) 888-0655		Patterson,	NY
GROUND W			N							OFFSET		
DATE	3/29/2								Y COMPILED FOR	GROUND ELEVATION	_	
TIME	0 Hou					Pa			Development Co., LLC	HOLE No	B-15	
DEPTH	16'-(0"							t. 6 , Suite 1	CASING	SSA	5"
SAMPLER D	ia (Type/O.D			2" / 1-				Carme	I, NY 10512	SAMPLER		
TYPE OF RI	G	C	ME 5	5 - Tra	ack		·			CORE BARREL		
C B D A L E S O P	SAMPLE	SAMP	BL		R 6 INCH	ES	DENSITY OR	PROFILE CHANGE	FIELD IDENTIFICATION (OF SOILS	SAMPLE	BORE / WELL
N T	DEPTH (FEET)	TYPE		1	1		CONSIST MOISTURE	DEPTH	DEMARKA			
с ^S Н			0-6	6-12	12-18	18-24		ELEV	REMARKS		NO PEN REC.	(NOT TO SCALE)
-5 _ -10 _ -15 _ -20 _ -25 _ -30 _ -35 _ -40 _								17'	DARK BROWN SILTY SAND, ROOTS BROWN OLIVE SILTY SAND, GRAVE OF WEATHERED ROCK BROWN SILTY SAND & WEATHERED BROWN SILTY SAND & WEATHERED REFUSAL	ROCK		
-50 _			D-				1000 - 0. 11	70/ 1:441-	e = 10-20%, some = 20-35%	and $= 25.500$		
				υρυπι				570, IIIIE		, anu - 35-50%		
DRILLER HELPER SOILS ENGI DRILLING IN	SPECTOR	A.W J.C.							SAMPLE TYPE C = CORED W = WASHED SS = SPLIT SPOON UP = UNDISTURBED PISTON TP = TEST PIT UT = UNDISTURBED THINWALL	COHESIONLESS SOIL 0 - 4 VERY LOOSE 4 - 10 LOOSE 10-30 MEDIUM 30-50 DENSE 50+ VERY DENSE	0 - 2 VER 2 - 4 SOF 4 - 8 MED 8 15 STIF 15-30 VEI 30+ HARI	T IUM F RY STIFF
NOT F	RESPONSIBL	E FOR S	SAMPLE	STORAG	E AFTER	30 DAYS				FILE	C04116	

							S	oil Sa	mpling Log			
DATE STARTE	ED	3/29	/2004	ļ.					orings, LLC	SHEET	1 OF 1	······
DATE FINISHE	ED		/2004	ļ			Box 69 - S			PROJECT No	C04116	
WEIGHT OF H	AMMER		Lbs.			1		-	INVIRONMENTAL DRILLING	LOCATION	Rt. 311	
HAMMER FAL	L	30"					SECTECHNIC		888-3857 (203) 888-0655		Patterson,	NY
GROUND WA			N					FAX	(203) 888-0655	OFFSET 30'-N	orth	
DATE	3/29/2	004							Y COMPILED FOR	GROUND ELEVATIO	N	
TIME	0 Hoi	Irs				Pa	atterson C	rossin	g Development Co.,LLC	HOLE No.	B-16	
DEPTH	Dry	/						1699 R	t. 6 , Suite 1	CASING	SSA	5''
SAMPLER Dia	a. (Type/O.D			2" / 1.				Carme	I, NY 10512	SAMPLER		
TYPE OF RIG		С	ME 5	5 - Tra	ack					CORE BARREL		
	SAMPLE	SAMP	В	LOWS PE		ES	DENSITY OR	PROFILE		OF SOILS	SAMPLE	BORE / WELL
SO P	DEPTH (FEET)	TYPE		ON SA	MPLER		CONSIST MOISTURE	DEPTH				
, W Т GS Н	(,,		0-6	6-12	12-18	18-24		ELEV	REMARKS		NO. PEN REC.	(NOT TO SCALE)
								2'6"	DARK BROWN SILTY SAND, ROOTS BROWN SILTY SAND, GRAVEL			
									REFUSAL			
-5 _												
-10 _												
45												
-15 _												
									OFFSET 8' EAST ENCOUNTERED RE	FUSAL AT 2'		
-20 _												
-20 -												
-25 _												
-30 _												
-35 _												
-40 _												
-45 _												
-50 _												
				L					- 40.000/ 00.050/	and - 05 5000		
			Pr	oporti	ons us	sea: ti	ace = 0.10	J%, IITTIE	e = 10-20%, some = 20-35%	, and = 35-50%		
DRILLER		A.W							SAMPLE TYPE C = CORED	COHESIONLESS SOI 0 - 4 VERY LOOSE	LS COHESIVE 0 - 2 VER	SON S Y SOFT
HELPER		J.C.							W = WASHED SS = SPLIT SPOON	4 - 10 LOOSE 10-30 MEDIUM	2-4 SOF 4-8 MED	T MUJM
SOILS ENGINE	EER								UP = UNDISTURBED PISTONN TP = TEST PIT	30-50 DENSE 50+ VERY DENSE	8 15 STIF 15-30 VEI	F RY STIFF
DRILLING INS									UT = UNDISTURBED THINWALL		30+ HAR	D
	SPONSIBL	E FOR	SAMPLE	STORAG	EAFTER	30 DAYS				FILE	C04116	

							S	oil Sa	mpling Log			
DATE STAR	TED	3/30	/2004			Con	necticut	Tast R	orings, ILC	SHEET	1 OF 1	
DATE FINISH	HED	3/30	/2004				Box 69 - S			PROJECT No	C04116	
WEIGHT OF	HAMMER		Lbs.					-	NVIRONMENTAL DRILLING	LOCATION	Rt. 311	
HAMMER FA	LL	30"					SECTECHNIC	(203)	888-3857 (203) 888-0655		Patterson,	NY
GROUND W			N					FAX ((203) 888-0655	OFFSET		
DATE	3/30/2								Y COMPILED FOR	GROUND ELEVATION		
TIME	0 Hot					Pa			g Development Co.,LLC	HOLE No.	B-17	
DEPTH	10'-0	0''							t. 6 , Suite 1	CASING	SSA	5''
SAMPLER D	ia. (Type/O.D			2" / 1-				Carme	I, NY 10512	SAMPLER		
TYPE OF RIC	3	C	ME 5	5 - Tra	ack					CORE BARREL		<u></u>
GBD ALE SOP	SAMPLE	SAMP	BL		R 6 INCH	ES	DENSITY OR	PROFILE CHANGE	FIELD IDENTIFICATION C	OF SOILS	SAMPLE	BORE / WELL
N W T	DEPTH (FEET)	TYPE					CONSIST MOISTURE	DEPTH				
с ^ъ н	. ,		0-6	6-12	12-18	18-24		ELEV.	REMARKS		NO. PEN REC.	(NOT TO SCALE)
-5 _ -10 _									DARK BROWN SILTY SAND, ROOTS BROWN OLIVE SILTY SAND OLIVE BROWN SILTY SAND, COBBLE	STONES		
-15 _								19'	OLIVE BROWN SILTY SAND, COBBLI	-910NE9		T. F. C.
-20 _									REFUSAL			
-25 _						-						
-30 _				- - -								
-35 _												
-40 _												
-45 _												
-50 _				000-+:			raco = 0.40)0/ 1:441-	r = 10.20% some = 20.25%	and -25.500		
				oporti		seu: ti		70, IIIIE	e = 10-20%, some = 20-35%,	anu - 35-50%		
DRILLER [:] HELPER: SOIL S ENGI DRILLING IN	SPECTOR	C.D. A.W							SAMPLE TYPE C = CORED W = WASHED SS = SPLIT SPOON UP = UNDISTURBED PISTON TP = TEST PIT UT = UNDISTURBED THINWALL	COHESIONLESS SOIL 0 - 4 VERY LOOSE 4 - 10 LOOSE 10-30 MEDIUM 30-50 DENSE 50+ VERY DENSE	0-2 VER 2-4 SOF 4-8 MED 815 STIF 15-30 VEF 30+ HARE	Y SOFT T IUM F RY STIFF
NOT R	RESPONSIBL	E FOR S	SAMPLE	STORAG	E AFTER	30 DAYS				FILE	C04116	

							S	oll Sa	mpling Log			
DATE STAR	TED		/2004			Cor	necticut	Test R	orings, 🗤 🧄	SHEET	1 OF 1	
DATE FINISI	HED	3/30	/2004				Box 69 - 5			PROJECT No	C04116	
WEIGHT OF	HAMMER		Lbs.			1		-	NVIRONMENTAL DRILLING	LOCATION	Rt. 311	
HAMMER FA	ALL.	30"					SECTECHNIC	(203)	888-3857 (203) 888-0655		Patterson,	NY
GROUND W	ATER OBSE	RVATIO	N					FAX [,] (203) 888-0655	OFFSET		
DATE	3/30/2	004					E	SPECIALL	Y COMPILED FOR	GROUND ELEVATION		
TIME	0 Ho	urs				Pa	atterson C	rossing	g Development Co.,LLC	HOLE No.	B-18	
DEPTH	6'-0)''						1699 R	t. 6 , Suite 1	CASING	SSA	5''
SAMPLER D	la (Type/O [D./I.D.)	SS	2"/1-	3/8"	1		Carme	I, NY 10512	SAMPLER		
TYPE OF RI	G	С	ME 5	5 - Tra	ack	1				CORE BARREL		
C B D	SAMPLE		BL	OWS PE	R 6 INCH	ES	DENSITY OR	PROFILE			SAMPLE	BORE / WELL
S O P	DEPTH	SAMP TYPE		ON SA	MPLER		CONSIST	CHANGE DEPTH	FIELD IDENTIFICATION C	JF SUILS	SAMPLE	BORE / WELL
N W T G S H	(FEET)		0-6	6-12	12-18	18-24	MOISTURE	ELEV	REMARKS		NO. PEN REC.	(NOT TO SCALE)
									DARK BROWN SILTY SAND, ROOTS			
									OLIVE BROWN SILTY SAND, GRAVED	1.0	\top	
-5												
									"SAME" WITH COBBLESTONES			1
-10												
-15 _								15'				7
									BOTTOM OF BORING		1	
-20												
-10 _												
-25												
-23 _												
-30												
-30 _												
25												
-35 _												
	ł											
-40 _												
-45 _												
								1				
-50 _												
				L		L		L				
			Pr	oporti	ons us	sed: t	race = 0-10	J%, little	e = 10-20%, some = 20-35%,	and = 35-50%		
DDILLED		C.D.							SAMPLE TYPE C = CORED	COHESIONLESS SOIL	COHESIVE	SOILS
		A.W							W = WASHED	4 - 10 LOOSE	2~4 SOF	
HELPER:	MEED.		25						SS = SPLIT SPÖÖN UP = UNDISTURBED PISTON	10-30 MEDIUM 30-50 DENSE	4 - 8 MED 8 15 STIF 15-30 VEI	F
SOILS ENGI									TP = TEST PIT UT = UNDISTURBED THINWALL	50+ VERY DENSE	15-30 VE 30+ HARI)
DRILLING IN	RESPONSIBI	LE FOR	SAMPLE	STORAG	E AFTER	30 DAYS				eu e	C04116	
			and the last of the last of							FILE		

							S	oil Sa	mpling Log			
DATE START	TED		/2004			Con	necticut	Test B	orings, llc	SHEET	1 OF 1	
DATE FINISH			/2004		_		Box 69 - S			PROJECT No.	C04116	
WEIGHT OF			Lbs.						NVIRONMENTAL DRILLING	LOCATION	Rt. 311	
HAMMER FA		30"						(203) EAX	888-3857 (203) 888-0655		Patterson,	NY
GROUND W			N							OFFSET 20'Ea		
DATE	3/30/2								Y COMPILED FOR	GROUND ELEVATION		
TIME	0 Ho					Pa			g Development Co.,LLC	HOLE No	B-19	AT 11
DEPTH	6'-0								t. 6 , Suite 1	CASING	SSA	5''
SAMPLER D				2"/1-				Carme	I, NY 10512	SAMPLER		
TYPE OF RIC	G	С		5 - Tra			F		······	CORE BARREL		
CBE SOP	SAMPLE DEPTH (FEET)	SAMP TYPE	BL	LOWS PE ON SA	R 6 INCH MPLER	ES	DENSITY OR CONSIST MOISTURE	PROFILE CHANGE DEPTH		DF SOILS	SAMPLE	BORE / WELL
N W T G H	(1221)		0-6	6-12	12-18	18-24		ELEV.	REMARKS		NO. PEN REC.	(NOT TO SCALE)
								10'	DARK BROWN SILTY SAND. ROOTS BROWN SILTY SAND		+	
												n
_									OLIVE SILTY SAND, LITTLE GRAVEL	COBBLESTONES		
-5 _									(TILL)			
								8'				
-10									REFUSAL			
-10 _												
-15 _												
-20 _												
-25 _												
-30 _												
									1			
-35												
-99 _									1			
-40 _												
_												
-45 _				1								
-50 _												
								20/ 1:44	= 10.20% come = 20.25%	and - 25 500/		
			Pr	οροπι	ons u	sea: t	ace = 0.10	J70, IITTIE	e = 10-20%, some = 20-35%	, anu = 35-50%		
DRILLER		C.D.	(SAMPLE TYPE C = CORED	COHESIONLESS SOII 0 - 4 VERY LOOSE	0-2 VER	Y SOFT
HELPER		A.W	-						W = WASHED SS = SPLIT SPOON	4 - 10 LOOSE 10-30 MEDIUM	2-4 SOF 4-8 MED	T IU M
SOILS ENGI	NEER								UP = UNDISTURBED FISTON TP = TEST PIT	30-50 DENSE 50+ VERY DENSE	8 15 STIF 15-30 VEF	RYSTIFF
DRILLING IN	SPECTOR								UT = UNDISTURBED THINWALL		30+ HARE	,
NOT R	RESPONSIBL	LE FOR S	SAMPILE	STORAG	E AFTER	30 DAYS				FILE	C04116	

						_	S	oil Sa	mpling Log				
DATE STARTED			/2004			Cor	nnecticut	Test B	orings, ILC	SHEET	1	OF 1	
DATE FINISHED			/2004				Box 69 - S					4116	
WEIGHT OF HA	MMER	140 30''	LDS.				GEOTECHNIC	CAL & E	NVIRONMENTAL DRILLING	LOCATION		Rt. 311 terson,	
GROUND WATE	R OBSE	101110-0	N					(203) FAX (888-3857 203) 888-0655	OFFSET	rau	lerson,	INT
DATE 3	3/30/2	004					E	SPECIALL	Y COMPILED FOR	GROUND ELEVATION			
TIME	0 Hou	urs				Pa	atterson C	rossing	Development Co.,LLC	HOLE No.	B-2	20	
DEPTH	Dry	/						1699 R	t. 6 , Suite 1	CASING	SS	SA	5"
AMPLER Dia. (Type/O.D			2'' / 1-				Carme	I, NY 10512	SAMPLER			
YPE OF RIG		С	ME 5	5 - Tra	ack				F	CORE BARREL			
	AMPLE	SAMP	BL		R 6 INCH	ES	DENSITY OR	PROFILE CHANGE	FIELD IDENTIFICATION	OF SOILS	s	AMPLE	BORE / WELL
NWT (DEPTH (FEET)	TYPE					CONSIST MOISTURE	DEPTH ELEV	REMARKS			DENIDEC	(NOT TO SCALE)
G ^S H		$\left \right $	0-6	6-12	12-18	18-24		8"	DARK BROWN SILTY SAND		NO.	PEN REC.	(NOT TO SCALE)
									BROWN SILTY SAND		+		
								2'6''	OLIVE BROWN SILTY SAND, GRAVE		_		
-5 _									(TILL)	L, COBBLESTONES			
-10 _								10'	BOTTOM OF BORING		-		
-15 _													
-20 _													
-25													
-			-										
-30 _													
-35 _													
-40 _													
.45													
-45 _													
-50 _													
									40.000/				
		6.00.00	Pr	oporti	ons us	sed: t	race = 0-10	0%, little	e = 10-20%, some = 20-35%	, and = 35-50%			
RILLER		C.D.							SAMPLE TYPE C = CORED	COHESIONLESS SOIL 0 - 4 VERY LOOSE	S	COHESIVE	SOILS
ELPER:		A.W							W = WASHED SS = SPLIT SPOON	4 - 10 LOOSE 10-30 MEDIUM		2 4 SOF 4 - 8 MED	T IUM
DILS ENGINEE	R								UP = UNDISTURBED PISTON TP = TEST PIT	30-50 DENSE 50+ VERY DENSE		8 15 STIFI 15-30 VEF	F RY STIFF
RILLING INSPE	ECTOR											30+ HARE)
NOT RES		e for s	Sample	STORA:C	E AFTER	30 DAYS				FILE	C0	4116	

							S	oil Sa	mpling Log			
DATE STAR	TED	3/30	/2004			Con	necticut	Test R	orings, LLC	SHEET	1 OF 1	
DATE FINISH	HED	3/30	/2004				Box 69 - S			PROJECT No	C04116	
WEIGHT OF	HAMMER	140	Lbs.					•	NVIRONMENTAL DRILLING	LOCATION	Rt. 311	
HAMMER FA		30"						(203)	888-3857 (203) 888-0655		Patterson,	NY
GROUND W			1					FAX (203) 000-0000	OFFSET		
DATE	3/30/2								Y COMPILED FOR	GROUND ELEVATION		
TIME	0 Hoi					Pa			Development Co.,LLC	HOLE No.	B-21	
DEPTH	9'-0								t. 6 , Suite 1	CASING	SSA	5''
SAMPLER D				2" / 1-				Carme	I, NY 10512	SAMPLER		
TYPE OF RIG	G	C	ME 5	5 - Tra	ack			r		CORE BARREL		
CBD ALE SOP	SAMPLE	SAMP	BL		R 6 INCH MPLER	ES	DENSITY OR	PROFILE CHANGE	FIELD IDENTIFICATION C	OF SOILS	SAMPLE	BORE / WELL
чw т	DEPTH (FEET)	TYPE			1		CONSIST MOISTURE	DEPTH				
с ^S Н	(*/		0-6	6-12	12-18	18-24		ELEV	REMARKS		NO. PEN REC.	(NOT TO SCALE)
-5 _ -10 _ -15 _ -20 _ -25 _ -30 _								6"	DARK BROWN SILTY SAND, ROOTS BROWN OLIVE SILTY SAND "SAME" W/ GRAVEL, COBBLESTONE BOTTOM OF BORING	ES		
-40 _ -45 _												
-50 _				oporti	ons us	sed: ti	race = 0-10	D%, little	e = 10-20%, some = 20-35%			
DRILLER		C.D.							SAMPLE TYPE C = CORED	COHESIONLESS SOIL 0 - 4 VERY LOOSE	0-2 VER	Y SOFT
HELPER		A.W							W = WASHED SS = SPLIT SPOON	4 - 10 LOOSE 10-30 MEDIUM	2 - 4 SOF 4 - 8 MED	TUUM
SOILS ENGI	NEER								UP = UNDISTURBED PISTON TP = TEST PIT	30-50 DENSE 50+ VERY DENSE	8 15 STIF 15-30 VE	RY STIFF
DRILLING IN									UT = UNDISTURBED THINWALL		30+ HARC)
	RESPONSIBL	EFORS	SAMPLE	STORAGI	e after	30 DAYS				FILE	C04116	

							S	oil Sa	mpling Log			
DATE STAR	TED	3/30	/2004			Cor	necticut	Test R	orings, ILC	SHEET	1 OF 1	
DATE FINIS	HED	3/30	/2004				Box 69 - 5			PROJECT No	C04116	
WEIGHT OF	HAMMER	140	Lbs.						NVIRONMENTAL DRILLING	LOCATION	Rt. 311	
HAMMER FA		30"					0201201111	(203) FAX: (888-3857 (203) 888-0655		Patterson	, NY
GROUND W			N							OFFSET		
DATE	3/30/2								Y COMPILED FOR	GROUND ELEVATION		
TIME	0 Hoi 8'-0					Pa			g Development Co.,LLC	HOLE No CASING	B-22	5''
DEPTH SAMPLER D			00	2" / 1-	2/0"				t. 6 , Suite 1	SAMPLER	SSA	D
TYPE OF RI			ME 55					Carme	I, NY 10512	CORE BARREL		
C _D D					R 6 INCH	E 9		PROFILE		OUNE DIVINEE		1
S O P	SAMPLE DEPTH	SAMP	DL		MPLER	Eð	DENSITY OR CONSIST	CHANGE	FIELD IDENTIFICATION (OF SOILS	SAMPLE	BORE / WELL
N T G ^S H	(FEET)	TYPE	0-6	6-12	12-18	18-24	MOISTURE	DEPTH ELEV.	REMARKS		NO PEN REC	(NOT TO SCALE)
					12 10	10 2 1		6''	DARK BROWN SILTY SAND, ROOTS			
								1'6"	BROWN SILTY SAND			
									OLIVE BROWN SILTY SAND, GRAVE	L, COBBLESTONES		
-5 _									A 1 Elses for f.			
									"SAME"			-
									GAME			
-10 _												
-15 _								15'	BOTTOM OF BORING		-	and the second se
									BOTTOM OF BORING			
-20												
-20 _												
					1							
-25 _												
-30 _												
-35 _												
						[
-40												
-40 _												
-45												
_												
-50 _												
						<u> </u>			10.000/	1 05 500		
			Pr	oporti	ons u	sed: t	race = 0-10	0%, little	e = 10-20%, some = 20-35%	, and = 35-50%		
DRILLER		C.D.							SAMPLE TYPE C = CORED	COHESIONLESS SOII 0 - 4 VERY LOOSE	LS COHESIV 0 - 2 VEI	/E SOILS RY SOFT
HELPER		A.W							W = WASHED SS = SPLIT SPOON	4 - 10 LOOSE 10-30 MEDIUM	2-4 SO 4-8 ME	FT DIUM
SOILS ENG	INEER								UP = UNDISTURBED PISTON TP = TEST PIT UT = UNDISTURBED THIM WALL	30-50 DENSE 50+ VERY DENSE	8 15 STI 15-30 VE	IFF ERY STIFF
DRILLING									ut = und/sturbed This/Wall		30+ HAF	RD
	RESPONSE	LEIRORS	SAMPLIES	STORAG	E AFTER	30 DAYS				FILRÉ	C04116	

DATE STARTE	D	3/30	/2004				nocticut	Tost P		SHEET	1	OF 1	
ATE FINISHE	D	3/30	/2004				Box 69 - S		Orings, LLC	PROJECT No	C04		
EIGHT OF H	AMMER	140	Lbs.					-	NVIRONMENTAL DRILLING	LOCATION		t. 311	
AMMER FALL		30"						(203)	888-3857 (203) 888-0655		Patte	erson,	NY
ROUND WAT			N					FAX	203) 666-0655	OFFSET			
	3/30/2					-			Y COMPILED FOR	GROUND ELEVATION			
ME	0 Hou					Pa			g Development Co.,LLC	HOLE No.	B-23		# 11
EPTH	12'-(0.0	2'' / 1-	2/011				t. 6 , Suite 1 I, NY 10512	CASING	SS	Ą	5"
AMPLER Dia	(Type/O L			2 / 1- 5 - Tra				Carme	1, NT 10512	CORE BARREL			
				OWS PE				PROFILE		CORE DARREL	1		
t Ε [SAMPLE DEPTH	SAMP	BL		MPLER	E9	DENSITY OR CONSIST	CHANGE	FIELD IDENTIFICATION	OF SOILS	SA	MPLE	BORE / WELI
	(FEET)	TYPE	0-6	6-12	12-18	18-24	MOISTURE	DEPTH ELEV	REMARKS		NO. F	EN REC.	(NOT TO SCALE
								-	DARK BROWN SILTY SAND. ROOTS				
								2'6''	ORANGE BROWN SILTY SAND, ROC BROWN SILTY SAND, COBBLESTOR				
									BROWN SILTY SAND, COBBLESTON	ALS (TILL)			
-5 _													
-10 _								1	OLIVE SILT, SAND, GRAVEL, COBBI (TILL)	LESIONES			
									()				
-15													
													-
-20 _													
25									OLIVE OREV SILTY SAND CRAVEL	CODDIECTONES			
-25 _									OLIVE GREY SILTY SAND, GRAVEL, (TILL)	COBBLESTONES			
-30 _								30'					
									BOTTOM OF BORING				
-35 _													
-40													
-													
-45 _													
-50 _													
L		1	Pr	oporti	ons u	sed: t	race = 0-1	0%. little	e = 10-20%, some = 20-35%	and = 35-50%			
		0.0						- 70, 1100			1.5 0		SOILS
RILLER		C.D. A.W							SAMPLE TYPE C = CORED W = WASHED	COHESIONLESS SOI 0 - 4 VERY LOOSE 4 - 10 LOOSE	0	OHESIVE - 2 VER - 4 SOFT	Y SOFT
		M. VV							SS = SPLIT SPOON UP = UNDISTURBED PISTON	10-30 MEDIUM 30-50 DENSE	4	- 8 MEDI 15 STIFF	
									TP = TEST PIT UT = UNDISTURBED THINWALL	50+ VERY DENSE	1	5-30 VEF 0+ HARD	RY STIFF
RILLING INSP	- CUIUR											116	

						S	oil Sa	mpling Log			
DATE STARTED	3/30	/2004			Con	necticut	Tost R	orings, LLC	SHEET	1 OF 1	
DATE FINISHED		/2004				Box 69 - S			PROJECT No.	C04116	
WEIGHT OF HAMM		Lbs.					-	NVIRONMENTAL DRILLING	LOCATION	Rt. 311	
HAMMER FALL	30"							888-3857 203) 888-0655		Patterson,	NY
GROUND WATER O		N							OFFSET		
	0/2004							Y COMPILED FOR	GROUND ELEVATION	D 04	
	Hours				Pa			g Development Co.,LLC	HOLE No CASING	B-24	5"
DEPTH 2 SAMPLER Dia. (Typ	0'-0"	00 1	2'' / 1-	2/011				t. 6 , Suite 1 I, NY 10512	SAMPLER	SSA	5
TYPE OF RIG		ME 55					Canne	I, NT 10512	CORE BARREL		
C _B D				R 6 INCH			PROFILE				
		DL		MPLER	20	DENSITY OR CONSIST	CHANGE DEPTH	FIELD IDENTIFICATION C	OF SOILS	SAMPLE	BORE / WELL
S H (FEI	ET)	0-6	6-12	12-18	18-24	MOISTURE	ELEV	REMARKS		NO PEN REC.	(NOT TO SCALE)
								DARK BROWN SILTY SAND. ROOTS			
							3'	BROWN SILTY SAND			
							Г —	OLIVE SILTY SAND, LITTLE GRAVEL,	COBBLESTONES		
-5 _								(TILL)			
											and the second
-10 _											
-15											
							}				
											100
-20 _											
							22'				
								REFUSAL			
-25 _											
-30 _											
-35 _											
-40 _											
-45 _											
-50 _											
		Dr	onorti			$r_{200} = 0.10$	106 little	 e = 10-20%, some = 20-35%,	and = $35_{-}50\%$		
			οροιιί		seu. l		, nut				
DRILLER	C.D.							SAMPLE TYPE C = CORED W = WASHED	COHESIONLESS SOILS 0 - 4 VERY LOOSE 4 - 10 LOOSE	COHESIVE 0 - 2 VER 2 - 4 SOF	Y SOFT
HELPER:	A.W							W = WASHED SS = SPLIT SPOON UP = UNDIST URBED PIS TON	10-30 MEDIUM 30-50 DENSE	4-8 MED	NUM
SOILS ENGINEER								TP = TEST PIT UT = UNDISTURBED THINWALL	50+ VERY DENSE	8 15 STIF 15-30 VEI 30+ HARI	RY STIFF
DRILLING INSPECT NOT RESPOR			STORACI	EAFTER	30 DAVS				FILE	C04116	
		weeks menter me							FILE		

			/2004			Con	necticut	Test B	orings, LLC	SHEET	1 OF 1	
ATE FINISHEE		3/30	/2004				Box 69 - S			PROJECT No	C04116 Rt. 31	
AMMER FALL		30"	LUS.			0	GEOTECHNIC	CAL & E		LUCATION	Patterson	
	R OBSEF		J					(203) FAX	888-3857 (203) 888-0655	OFFSET	ratterson	, 141
	3/30/20						E	SPECIALL	Y COMPILED FOR	GROUND ELEVATION		
	0 Hou					Pa			g Development Co.,LLC	HOLE No.	B-25	
PTH	26'-0	11							t. 6 , Suite 1	CASING	SSA	5"
MPLER Dia (Type/O.D	/I.D.)	SS	2" / 1-	3/8"			Carme	I, NY 10512	SAMPLER		
PE OF RIG		C	ME 5	5 - Tra	ack					CORE BARREL		
B D L E S	SAMPLE	CAMP	BL	OWS PE		ES	DENSITY OR	PROFILE CHANGE		OF SOILS	SAMPLE	BORE / WEL
O P I	DEPTH (FEET)	SAMP TYPE		ON SA	MPLER		CONSIST MOISTURE	DEPTH				4
^s н			0-6	6-12	12-18	18-24	MOIDIONE	ELEV.	REMARKS		NO. PEN REC	(NOT TO SCAL
									DARK BROWN SILTY SAND, ROOTS BROWN SILTY SAND	1	+	
-								5'				
-5 _									OLIVE SILTY SAND, LITTLE GRAVE	., COBBLESTONES		
									(TILL)			
-10 _								1				12.
-15 _												
												and the second
									OLIVE GREY SILTY SAND, GRAVEL	COBBLESTONES		
-20									(TILL)			
-20 _												
-25 _												
-30 _												
-35												
								37'	055110.41		4	
									REFUSAL			
-40 _												
-45 _												
-50												
-50 _												
I		·1	Pr	oporti	ons us	sed: ti	race = 0-10	D%, little	e = 10-20%, some = 20-35%	, and = 35-50%	ii	
		C.D.		•							S COHESIV	E SOILS
RILLER		A.W							SAMPLE TYPE C = CORED W = WASHED	COHESIONLESS SOIL 0 - 4 VERY LOOSE 4 - 10 LOOSE	2-4 SO	FT
LPER		m. 44							SS = SPLIT SPOON UP = UNDISTURBED PISTON	10-30 MEDIUM 30-50 DENSE	4-8 ME 815 STI	DIUM
LS ENGINE									TP = TEST PIT	50+ VERY DENSE		

					S	o <mark>il Sa</mark>	mpling Log			
DATE STARTED	3/30/2	2004		Con	necticut	Test Ba	orings, LLC	SHEET	1 OF 1	
DATE FINISHED	3/30/2	2004			Box 69 - S			PROJECT No.	C04116	
WEIGHT OF HAMMER	140 L	.bs.		1		•	NVIRONMENTAL DRILLING	LOCATION	Rt. 311	
HAMMER FALL	30"					(203)	888-3857 203) 888-0655	055057	Patterson	, NY
GROUND WATER OBSE								OFFSET GROUND ELEVATIO		
DATE 3/30/2				D			Y COMPILED FOR Development Co.,LLC	HOLE No.	B-26	
тіме 0 Ної DEPTH 18'-(Fe			t. 6 , Suite 1	CASING	SSA	5"
SAMPLER Dia. (Type/O.I		SS 2" / 1	_3/8''	1			I, NY 10512	SAMPLER	55A	5
TYPE OF RIG		1E 55 - Ti		1		Carine	1, 10012	CORE BARREL		
			ER 6 INCH	ES	DENSITY OR	PROFILE				
S P DEPTH	SAMP TYPE		AMPLER		CONSIST	CHANGE DEPTH	FIELD IDENTIFICATION C	of soils	SAMPLE	BORE / WELL
N W T (FEET)		0-6 6-12	12-18	18-24	MOISTURE	ELEV	REMARKS		NO PEN REC	(NOT TO SCALE)
-5 _ -10 _ -15 _ -20 _ -25 _ -30 _ -35 _ -40 _ -45 _						21'	DARK BROWN SILTY SAND, ROOTS BROWN SILTY SAND W/ LG. COBBLE BROWN OLIVE SILTY SAND, LITTLE COBBLESTONES (TILL)			
-50 _										
		Propor	tions	L sed: t	$I_{race = 0.10}$)% littl	 e = 10-20%, some = 20-35%	and = 35-50%		L
	-	1000	aona u	. u	1000 - 0-10	270, nul				
DRILLER	C.D.						SAMPLE TYPE C = CORED W = WASHED	COHESIONLESS SO 0 - 4 VERY LOOSE 4 - 10 LOOSE	ILS COHESIV 0 - 2 VEF 2 - 4 SOF	RY SOFT
HELPER	A.W.						SS = SPLIT SPOON UP = UNDISTURBED PISTON	10-30 MEDIUM 30-50 DENSE	4 - 8 MEI 8 15 STI	DIUM
SOILS ENGINEER							TP = TEST PIT UT = UNDISTURBED THINWALL	50+ VERY DENSE	15-30 VE	RY STIFF
DRILLING INSPECTOR. NOT RESPONSIU	I FIEMB CA	NOR STOODA		30 DAVS				FILE	C04116	

DATE STARTE	D	3/31	/2004							SHEET	1	OF 1	
ATE FINISHE	D		/2004				Box 69 - S		Orings, LLC	PROJECT No		1116	
VEIGHT OF H	AMMER	140	Lbs.					-	NVIRONMENTAL DRILLING	LOCATION		Rt. 311	
AMMER FAL		30"						(203) FAX	888-3857 (203) 888-0655		Patt	erson,	NY
ROUND WAT	3/31/2		N							OFFSET GROUND ELEVATION			
ATE ME	0 Hoi					Pa			Y COMPILED FOR g Development Co.,LLC	HOLE No.	B-2	7	
EPTH	20'-(I C			t. 6 , Suite 1	CASING	SS		5''
AMPLER Dia			SS	2" / 1-	3/8"				I, NY 10512	SAMPLER			÷.
PE OF RIG		С	ME 5	5 - Tra	ack				·	CORE BARREL			
в D L E	SAMPLE	SAMP	BL	OWS PE		ES	DENSITY OR	PROFILE	FIELD IDENTIFICATION	OF SOILS	s	AMPLE	BORE / WEL
O P	DEPTH (FEET)	TYPE		ON SA	MPLER		CONSIST MOISTURE	DEPTH					
^в н	(,	<u> </u>	0-6	6-12	12-18	18-24		ELEV	REMARKS DARK BROWN SILTY SAND, ROOTS		NO.	PEN REC.	(NOT TO SCAL
								4°	LT. BROWN SILTY SAND		†		0000
								_			+		
-5									OLIVE BROWN SILTY SAND				
									LARGE GRAVEL, COBBLESTONES	TILL)			L.
-10 _													- 12 -
													-
-15 _													
									COLOR CHANGE TO LT. GREY OLIV	E			
-20 _													
													-
-25 _													
								27'					
									REFUSAL		1		
-30													
-50 _													
-35 _													
-40													
_								1					
1													
-45 _													
-50 _													
									40.000				
			Pr	oporti	ons u	sed: t	race = 0-10	0%, little	e = 10-20%, some = 20-35%	, and = 35-50%			
RILLER:		C.D.							SAMPLE TYPE C = CORED	COHESIONLESS SOILS		COHESIVE	Y SOFT
ELPER		A.W							W = WASHED SS = SPLIT SPOON	4 - 10 LOOSE 10-30 MEDIUM		2-4 SOF 4-8 MED	T
DILS ENGINI	EER								UP = UNDISTURBED PISTON TP = TEST PIT UT = UNDISTUR BED T HIN WALL	30-50 DENSE 50+ VERY DENSE		8 15 STIF 15-30 VEI 30+ HARI	RY STIFF
	PECTOR								ST - SHORTONOLD IT MINY VALL				

							S	oil Sa	mpling Log			
DATE STAR	TED	3/30	/2004				necticut	Tast R	orings, LLC	SHEET	OF	
DATE FINISH	HED	3/30	/2004				Box 69 - S			PROJECT No	C0411	
WEIGHT OF	HAMMER		Lbs.					-	NVIRONMENTAL DRILLING	LOCATION	Rt. 3	
HAMMER FA	ALL	30"					SECTECTING	(203)	888-3857 (203) 888-0655		Patters	on, NY
GROUND W	ATER OBSE	RVATIO	N					FAX ((203) 888-0655	OFFSET		
DATE	3/30/2	004					E	SPECIALL	Y COMPILED FOR	GROUND ELEVATIO	N	
TIME	0 Hou	urs				Pa	atterson C	rossing	g Development Co.,LLC	HOLE No	B-28	
DEPTH	Dry	/						1699 R	t. 6 , Suite 1	CASING	SSA	5''
SAMPLER D	ia. (Type/O D	D./I.D.)	SS	2" / 1-	-3/8"]		Carme	I, NY 10512	SAMPLER		
TYPE OF RIG	G	С	ME 5	5 - Tra	ack]				CORE BARREL		
C D A L E	SAMPLE		BL		R 6 INCH	IES	DENSITY OR	PROFILE	FIELD IDENTIFICATION		SAMPL	E BORE / WELL
S P	DEPTH	SAMP TYPE		ON SA	MPLER		CONSIST	CHANGE DEPTH		01 00120	OAWI L	
NW T G ^S H	(FEET)		0-6	6-12	12-18	18-24	MOISTURE	ELEV	REMARKS		NO. PEN	REC (NOT TO SCALE)
								4"	DARK BROWN SILTY SAND, ROOTS			
								1	BROWN SILTY SAND OLIVE BROWN SILTY SAND & GRAV	FI		
									COBBLESTONES	lanc lan		
-5 _												
								CICII				
								6'6''	REFUSAL			
-10 _												
									OFFSET ATTEMPT MADE W/ REFUS	AL AT 4'		
									off delightenin i made in Rei do			
-15 _												
-20 _												
								1				
25												1
-25 _												
-30												
-35												
-40 _												
_												
-45 _												
-50 _												
							l					
			Pr	oporti	ons us	sed: t	race = 0-10	0%, little	e = 10-20%, some = 20-35%	, and = 35-50%	1	
DRILLER		C.D.							SAMPLE TYPE C = CORED	COHESIONLESS SC 0 - 4 VERY LOOSE	DILS COME	ESIVE SOILS VERY SOFT
HELPER		A.W							W = WASHED SS = SPLIT SPOON	4 - 10 LOOSE 10-30 MEDIUM	2 - 4	SOFT MEDIUM
SOILS ENGI	NEER								UP = UNDISTURBED PISTON	30-50 DENSE 50+ VERY DENSE	8 15 15-30	STIFF VERY STIFF
DRILLING IN									TP = TEST PIT UT = UNDISTURBED THINWALL		30+	HARD
NOT F	RESPONSIBL	E FOR S	SAMPLE	STORAGI	E AFTER	30 DAYS				FILE	C0411	6

							S	oil Sa	mpling Log			
DATE START	ED		/2004			Con			orings, LLC	SHEET	1 OF 1	
DATE FINISH	IED		/2004				Box 69 - S			PROJECT No	C04116	
WEIGHT OF I	HAMMER		Lbs.					•	ENVIRONMENTAL DRILLING	LOCATION	Rt. 311	
HAMMER FAI		30''						(203)) 888-3857 (203) 888-0655		Patterson,	NY
GROUND WA			N							OFFSET		
DATE	3/31/2					_			LY COMPILED FOR	GROUND ELEVATION		
TIME	0 Ηοι					Pa			g Development Co.,LLC	HOLE No.	B-29	
DEPTH	18'-0								tt. 6, Suite 1	CASING	SSA	5''
SAMPLER Dia		· · ·		2" / 1-				Carme	el, NY 10512	SAMPLER		
TYPE OF RIG	;	С	ME 5	5 - Tra	ack					CORE BARREL		
CBD ALE SOP	SAMPLE	SAMP	BL	OWS PE	R 6 INCH MPLER	ES	DENSITY OR	PROFILE CHANGE		DF SOILS	SAMPLE	BORE / WELL
NWT	DEPTH (FEET)	TYPE			MPLER		CONSIST MOISTURE	DEPTH				
д ^S Н	(· · /	-	0-6	6-12	12-18	18-24		ELEV	REMARKS		NO. PEN REC.	(NOT TO SCALE)
								6" 1'	DARK BROWN SILTY SAND, ROOTS GREY SILTY SAND, ROOTS		+	
								ľ —	BROWN SILTY SAND & GRAVEL (TIL	L)	+	
-5 _										0041/5/		
									OLIVE BROWN SILTY SAND, LITTLE COBBLESTONES (TILL)	GRAVEL		i al j
									COBBLECTORES (TILL)			
												1.00.0
-10 _												and the second sec
								1				
												and the second se
-15 _												
												a la companya da companya d
-20 _								20'	POTTON OF POPULO			
								4	BOTTOM OF BORING			
t								ł				
-25 _												
-30 _												
-35 _												
-40 _												
-45 _												
-50 _												
			Pr	oporti	ons us	sed: ti	race = 0-10	0%, little	e = 10-20%, some = 20-35%,	and = 35-50%		
		C.D.							SAMPLE TYPE	COHESIONLESS SOILS	COHESIVE	SOILS
DRILLER		A.W							C = CORED W = WASHED	0 - 4 VERY LOOSE 4 - 10 LOOSE	0-2 VER 2-4 SOF	Y SOFT T
HELPER		M. VV							SS = SPLIT SPOON UP = UNDISTURBED PISTON TP = TEST PIT	10-30 MEDIUM 30-50 DENSE	4 - 8 MED 8 15 STIFI 15-30 VEF	IUM
SOILS ENGIN									TP = TEST PIT UT = UNDISTURBED THINWALL	50+ VERY DENSE	15-30 VEF 30+ HARD	RY STIFF
DRILLING INS	SPECTOR [.] ESPONSIBL			STOPACE		30 0025					C04116	
HOT RI			WAAN FE (FILE	W V T I I V	

ATE STARTED	3/31	/2004			Con	necticut	Test R	orings, LLC	SHEET	1		
ATE FINISHED		/2004				Box 69 - S			PROJECT No.	CC)4116	
EIGHT OF HAMMER	140	Lbs.			1			NVIRONMENTAL DRILLING	LOCATION		Rt. 31	
AMMER FALL	30"							888-3857 (203) 888-0655		Pat	terson	, NY
ROUND WATER OBSE		1							OFFSET			
ate 3/31/2								Y COMPILED FOR	GROUND ELEVATION			
ME 0 Ho					Pa			g Development Co.,LLC	HOLE No	<u>B-</u>		
EPTH Dr		0.0	011 (4	0/011				t. 6, Suite 1	CASING	5	SA	5''
AMPLER Dia. (Type/O [2" / 1-				Carme	I, NY 10512	SAMPLER			
			5 - Tra				PROFILE	1	CORE BARREL			1
	SAMP	BL		R 6 INCH	ES	DENSITY OR CONSIST	CHANGE		OF SOILS		SAMPLE	BORE / WEL
W T (FEET)	TYPE	0.0			49.24	MOISTURE	DEPTH ELEV	REMARKS		NO	PEN REC	(NOT TO SCAL
з ⁸ Н	+	0-6	6-12	12-18	18-24		5"	DARK BROWN SILTY SAND, ROOTS				
								BROWN OLIVE SILTY SAND		1		
								ISAMEWAN CRAVEL CORDUSTON	100			
-5								"SAME" W/ GRAVEL, COBBLESTON	IES			
							5'6''					
								REFUSAL				
-10 _								OFFSET ATTEMPT -2' WEST ENCOU	INTERED REFUSAL			
								AT 4'6"				
-15 _								2ND OFFSET ATTEMPT-5' WEST EN REFUSAL AT 5'	COUNTERED			
-20 _												
-25 _												
-30 _												
-35 _												
-40												
-45												
50												
-50 _												
		Pr	oporti	ons u	sed: t	race = 0-10	0%, little	e = 10-20%, some = 20-35%	, and = 35-50%			
	0.0					,		SAMPLE TYPE	COHESIONLESS SOI	LS	COHESIV	E SOILS
RILLER	C.D. A.W							C = CORED W = WASHED	0 - 4 VERY LOOSE 4 - 10 LOOSE	-	0-2 VE 2-4 SO	RY SOFT FT
ELPER:	A.VV	12 C						SS = SPLIT SPOON UP = UNDISTURBED PISTON	10-30 MEDIUM 30-50 DENSE		4 - 8 ME 8 15 STI	DIUM FF
DILS ENGINEER								TP = TEST PIT UT = UNDISTURBED THINWALL	50+ VERY DENSE		15-30 VE 30+ HAF	ERY STIFF

DATE STARTE	D	3/30	/2004						mpling Log	SHEET	1	OF 1	
ATE FINISHEI			/2004						orings, LLC	PROJECT No		4116	
VEIGHT OF HA	AMMER	140					Box 69 - S	-		LOCATION		Rt. 311	
AMMER FALL		30"				(SEOTECHNI	CAL & E (203)	NVIRONMENTAL DRILLING 888-3857 203) 888-0655		Pat	terson,	NY
ROUND WAT	ER OBSE	RVATIO	1					FAX	203) 888-0655	OFFSET			
ATE	3/30/2								Y COMPILED FOR	GROUND ELEVATIO			
ME	0 Ho					Pa			Development Co.,LLC	HOLE No.	B-		
EPTH	11'-								t. 6, Suite 1	CASING	S	SA	5''
AMPLER Dia.	(Type/O.I			2" / 1-				Carme	I, NY 10512	SAMPLER			
YPE OF RIG				5 - Tra				0005115		CORE BARREL			
≜ĭ E S	SAMPLE DEPTH	SAMP	BL		R 6 INCH MPLER	ES	DENSITY OR CONSIST	PROFILE CHANGE	FIELD IDENTIFICATION	OF SOILS		SAMPLE	BORE / WEL
NW T	(FEET)	TYPE	0.0			40.04	MOISTURE	DEPTH ELEV.	REMARKS			PEN REC.	NOT TO SCALI
з н			0-6	6-12	12-18	18-24		10"	DARK BROWN SILTY SAND, ROOTS	S			
									BROWN SILTY SAND				
								1'6''	OLIVE BROWN SILTY SAND (TILL)				
-5 _									OLIVE BROWN SILTY SAND (TILL)				
-10 _									OF WE SHETVISAND, CODDUESTON				
									OLIVE SILTY SAND, COBBLESTON	ES (TILL)			
								13'					
45									REFUSAL				
-15 _													
-20													
_								1					
								r					
-25 _													
-30 _								1					
-35													
-40 _													
-45 _													
													2
50													
-50 _													
		1 1	Pr	oporti	ons us	sed: t	race = 0-10	0%. little	e = 10-20%, some = 20-35%	%. and = 35-50%	I	il	
					<u></u>			,				004501/	8011.8
RILLER		C.D.							SAMPLE TYPE C = CORED W = WASHED	COHESIONLESS SC 0 - 4 VERY LOOSE 4 - 10 LOOSE	1123	COHESIVE 0-2 VER 2-4 SOF	Y SOFT
ELPER		A.W							SS = SPLIT SPOON UP = UNDISTURBED PISTON	4 - 10 LOOSE 10-30 MEDIUM 30-50 DENSE		4 - 8 MED 8 15 STIF	IUM F
OILS ENGINE	ER								TP = TEST PIT UT = UNDISTURBED THINWALL	50+ VERY DENSE		15-30 VE 30+ HARI	RY STIFF
RILLING INSP												30+ HARI	,

DATE STARTED	3/30	2004						mpling Log	SHEET	1	DF 1	
ATE FINISHED		2004						orings, LLC	PROJECT No.	C04		
VEIGHT OF HAMMER	140					Box 69 - S			LOCATION		t. 311	
AMMER FALL	30"					SEOTECHNIC		NVIRONMENTAL DRILLING 888-3857 203) 888-0655		Patte	rson,	NY
ROUND WATER OBSE		1					FAX' (203) 888-0655	OFFSET			
ате 3/30/2								Y COMPILED FOR	GROUND ELEVATION			
ME 0 Ho					Pa			Development Co.,LLC	HOLE No	B-32		1911
EPTH Dr		00	011/4	2/01				t. 6 , Suite 1	CASING	SS	д	5''
AMPLER Dia. (Type/O.I			2'' / 1- 5 - Tra				Carme	I, NY 10512	CORE BARREL			
B D			OWS PE				PROFILE					
E SAMPLE	SAMP TYPE	DL		MPLER	23	DENSITY OR CONSIST	CHANGE DEPTH	FIELD IDENTIFICATION	OF SOILS	SA	MPLE	BORE / WEL
G ^S H (FEET)	TYPE	0-6	6-12	12-18	18-24	MOISTURE	ELEV	REMARKS		NO F	EN REC.	(NOT TO SCALE
							8''	DARK BROWN SILTY SAND, ROOTS	5			
			·				2'6''	BROWN SILTY SAND				
								OLIVE BROWN SILTY SAND & GRAV	/EL (TILL)			
-5 _												
-10							10'					
_					1			BOTTOM OF BORING	· · · · · · · · · · · ·	_		450-000000000
					1							
-15 _												
-20												
-20 _												r.
-25 _												
-30 _												
-35 _												
-40 _												
-45												
-50 _												
							0/ 1:44	= 10.200/ some $= 20.250/$	(ond - 25 500(
		Pr	oporti	ons u	sed: t	race = $0-10$	J‰, little	e = 10-20%, some = 20-35%	o, and = 35-50%			
RILLER	C.D.							SAMPLE TYPE C = CORED	COHESIONLESS SOI 0 - 4 VERY LOOSE	LS C	OHESIVE	Y SOFT
ELPER	A.W	ŝ						W = WASHED SS = SPLIT SPOON	4 - 10 LOOSE	2	- 4 SOF	TUM
								UP = UNDISTURBED PISTON TP = TEST PIT UT = UNDISTURBED THINWALL	10-30 MEDIUM 30-50 DENSE 50+ VERY DENSE	8 1	15 STIF 5-30 VE	F RY STIFF
OILS ENGINEER										0	0+ HARE	2

Appendix E

HYDROGEOLOGY INVESTIGATION (MOUNDING ANALYSIS)

GEOTECHNICAL ENGINEERS AND ENVIRONMENTAL CONSULTANTS

Hydrogeology Investigation (Mounding analysis)

Patterson Crossing South Disposal Area Patterson and Kent, New York

Prepared for:

Mr. Paul Camarda Hudson Valley Realty 1699 Route 6, Suite 1 Carmel, NY 10512

Prepared by:

Geo**Design**, Inc. 984 Southford Road Middlebury, CT 06762 Tel. (203) 758-8836 Fax. (203) 758-8842

> File No. 664-01.1 August 2005

984 SOUTHFORD ROAD . MIDDLEBURY, CONNECTICUT 06762 . TELEPHONE: 203.758.8836 . FACSIMILE: 203.758.8842

GEOTECHNICAL ENGINEERS AND ENVIRONMENTAL CONSULTANTS

d/b/a GeoDesign, Inc. P.C.

August 30, 2005 File No. 664-01

Mr. Paul Camarda Hudson Valley Realty 1699 Route 6, Suite 1 Carmel, NY 10512

Re: Hydrogeology Investigation (Mounding Analysis) Patterson Crossing –South Area Subsurface Disposal System Patterson and Kent, New York

Dear Paul:

The attached report presents the findings and conclusions of the hydrogeology investigation for the South Disposal Area of the proposed Patterson Crossing development off of Route 311 in the towns of Patterson and Kent, New York.

The investigation included the exploration, testing and analysis of the aquifer at the site under existing conditions. It also makes predictions regarding groundwater mounding under flows that will result from the proposed on-site subsurface disposal and treatment system.

Our work was completed as outlined in our March 11th, 2005 Workplan, which was submitted to the New York City Department of Environmental Protection (NYC DEP).

Very Truly Yours,

GeoDesign, Inc.

Original Signed

Original Signed

Jeffrey Buckley, P.E. (CT) Project Engineer Ulrich La Fosse, P.E. (NY, CT & MA) Sr. Principal

 $M\CL\664-01\HydrogelogyReportSouth.doc$

CONTENTS

1.0	INTRODUCTION	1
	0 Background 0 Present Study	
2.0 S	ITE DESCRIPTION	2
3.0 S	UBSURFACE EXPLORATIONS AND FIELD TESTING	2
3.2 3.3	0 Test Borings 0 Observation Wells 0 In-situ Permeability Tests 0 Groundwater Levels	3 3
4.0 S	ITE GEOLOGY	4
	0 Geologic Setting 0 Geologic Materials	
5.0	LABORATORY TESTING PROGRAM	5
6.0	SITE HYDROGEOLOGY	5
6.2 6.3	0 AQUIFER AND AQUIFER BOUNDARIES 0 AQUIFER CHARACTERISTICS 0 GROUNDWATER SOURCES AND DISCHARGE	5 6
7.0	HYDROGEOLOGICAL ANALYSIS (GROUNDWATER MODEL)	7
7.2 7.3 7.4 7.5 7.6	0 Model Description 0 Model Results, Calibration and Limitations	9 10 10 10 11
8.0	CONCLUSIONS	12
9.0	LIMITATIONS	13

.

CONTENTS (Cont'd)

Tables and Graphs

- Table No. 1 Groundwater and Well Data South Area
- Table No. 2 South Area Groundwater Elevations
- Table No. 3 Historical Precipitation at Station KPOU (1892-2005) (3 sheets)
- Table No. 4A Monthly Precipitation (at Stations KPOU, KDXR, and KHPN) since January 2003
- Table No. 4B Monthly Precipitation (at Stations KPOU, KDXR and KHPN) since January 2003 (plotted)
- Table No. 5A Monthly Precipitation Data and Comparison to on-site Rain Gauge
- Table No. 5B Daily Rainfall from on-site Rain Gauge
- Table No. 6 Summary of Soil Permeability South Area
- Table No. 7 Basis for Rainfall Selection
- Table No. 8A Basis for Pre-development Groundwater Recharge
- Table No. 8B Basis for Post-development Groundwater Recharge South Area
- Table No. 9 Summary of Depth to Bedrock
- Table No. 10 Existing Conditions Model Calibration Results
- Table No. 11 Increased Transmissivity Due to Increase Aquifer Saturated Thickness
- Table No. 12 Post Model Increase in Hydraulic Conductivity (to account for increased saturated thickness)

Appendices

Appendix 1 – Figures

Figure 1 – Area Plan (Site Locus and Model Limits)

- Figure 2 Site Plan South Area
- Figure 3 Existing Conditions Groundwater Contour Plan
- Appendix 2 Test Boring Logs (15 logs)
- Appendix 3 Falling Head Test Data (8 tests, 16 data sheets)
- Appendix 4 Laboratory Gradation Test Results (10 sheets) and Kozeny-Carman Analyses Summary
- Appendix 5 Groundwater Model Results Existing Conditions
 - Figure 5-1 Model Grid and Constant Head Boundaries
 - Figure 5-2 Model Bottom Elevation
 - Figure 5-3 Cross Section at Column 23
 - Figure 5-4 Cross Section at Row 30

Figure 5-5 – Soil Hydraulic Conductivity (Permeabilities) – Pre- Development Figure 5-6 – Groundwater Elevations – May/June 2005 Figure 5-7 – Model Calibration Residuals

Appendix 6 – Groundwater Model Results - Proposed Conditions Figure 6-1 – Post-Development Groundwater Recharge – South Area Figure 6-2 – Post-Development Groundwater Elevations – South Area Figure 6-3 – Post-Development Groundwater Velocities– South Area Figure 6-4 – Post-Development Groundwater Residuals – South Area

Appendix 7 - Groundwater Model Results Digital Format

Appendix 8 – Existing Conditions: Printout of MODFLOW Output – Proposed Conditions: Printout of MODFLOW Output

Appendix 9 – USGS References used to Estimate Base Flow (Groundwater Recharge) (8 sheets)

Appendix 10 – Limitations

1.0 INTRODUCTION

This report presents the results of the hydrogeology investigation for the proposed South Disposal Area at the proposed Patterson Crossing retail development, located off of Route 311 in the towns of Patterson and Kent, New York. Our work was performed in accordance with our workplan, dated March 11th, 2005 and submitted to the New York City Department of Environmental Protection (NYC DEP).

1.10 Background

The site Locus is shown on Figure 1, included in Appendix 1. The proposed South Disposal Area (South Area) is shown on Figure 2. The project civil engineer (Insite Engineering, Surveying and Landscape Architecture, P.C.) preliminarily explored this site in 2001. Insite Engineering also provided us with the base map for our exploration location plan.

In August 2004, GeoDesign planned, monitored and logged test pits in this area. These explorations were not witnessed by either NYC DEP or Putnam County Department of Health personnel. Data from these test pits is not included in this report. However, the 2004 test pit data was used to plan explorations performed during this study.

Soil encountered in the 2004 test pits consisted of about six inches of organic topsoil, overlying about 1.5 to 2 feet of fine silty sand subsoil, over dense to very dense glacial till deposits comprised of a heterogeneous mixture of sand, silt, gravel, cobbles and boulders.

In November 2004, three preliminary test borings and observation wells (termed GD-S-1 through GD-S-3) were drilled/installed at the proposed South Area. NYC DEP representatives witnessed these explorations. Locations of these wells are depicted on Figure 2.

Surficial materials encountered in the test borings were similar to conditions encountered in the August 2004 test pits. The 2004 test borings were advanced through the surficial soil to bedrock, which was encountered at depths ranging from 16 to 47 feet.

1.20 Present Study

Following the 2004 preliminary investigations, GeoDesign was retained to further study the site to collect field data and perform a hydrogeological investigation and mounding analysis. GeoDesign planned an exploration program consisting of ten additional test borings / monitoring well locations. In collaboration with Insite Engineering, we also planned ten deep test holes (test pits) and a percolation test adjacent to each test pit.

These explorations, along with the November 2004 test borings, were used to develop parameters for the hydrogeologic assessment (rainfall influence and mounding analysis), and numerical modeling - including preparation of a three dimensional mathematical model.

The field data collected from the test borings and observation wells were used in setting up our groundwater model and mounding analysis. Relevant data from these field investigations and subsequent laboratory testing is included in this report. Test pit data and soil percolation data was used by Insite Engineering in their design of the actual subsurface disposal system, and not used in the groundwater mounding analysis. This data is not included in this report as it will be included in Insite's work product.

2.0 SITE DESCRIPTION

The site is a wooded and undeveloped area (with the exception of the cell tower). It is bordered to the east by Interstate I-84 and to the north by Route 311. Private residential neighborhoods border the site to the west and south. The site is partially located in both the towns of Patterson and Kent, New York. The majority of the site acreage is located in Patterson, except for the northwest corner, adjacent to Route 311. The South Area in located entirely within the Town of Patterson.

The site has steep topography along the north and east perimeter, and the local high point in this locale is situated near the southwest corner of the site, near the cell phone tower. The tower is intended to remain in use on the property following the propose development. An unpaved road provides access to the cell tower from Concord Road. At the southwest corner of the site, grading drops to the west towards Lake Carmel and to the east towards Interstate I-84. Within the area of the proposed South Area depicted on Figure 2, a relatively flat area exists east of the existing access road.

Commercial development is planned for the site. The locations of the retail stores are downgradient, to the east and northeast of the proposed South Area. The wastewater from the proposed development will be pumped to the South Area and will be dosed by gravity into the proposed leaching field areas. The approximate outline of the proposed septic leaching fields is shown on Figure 2. A total sewage flow rate equal to 11,000 gpd is proposed, over a total surface area of approximately 280,000 square feet (140,000 square foot checkerboard pattern primary area and 140,000 square foot secondary area).

3.0 SUBSURFACE EXPLORATIONS and FIELD TESTING

The subsurface exploration, sampling, and field program performed for this study to supplement the exploration data described in Section 1.10 included test borings, observation wells, in-situ permeability tests (falling head tests).

3.10 Test Borings

GeoDesign personnel staked boring locations in the field by taping from existing site features. Insite Engineering later surveyed observation wells for location and elevation. Between April 25 and May 9, 2005 test borings were drilled at twelve locations depicted on Figure 2. Borings explored between these dates are termed S-4 through S-13, S-9A and S-13A, and logs are included in Appendix 2. Borings were monitored and logged by a Geo**Design** representative.

Borings were advanced using either 4.25-inch hollow stem augers, or 4-inch diameter flush-joint casing. Split spoon samples (24-inch long by 2-inch outside diameter) of unconsolidated materials were obtained at about five-foot intervals down to the bedrock level to allow retrieval of soils for visual classification and laboratory testing. Samples were kept in screw-top sealed glass jars. Where bedrock was encountered, a five-foot long rock core sample was taken to confirm the presence of bedrock (as differentiated from boulders) at refusal depth. Coring was performed using NX (2-1/8 diameter) diamond coring bits. In areas where shallow bedrock was encountered, a second core sample was obtained to provide additional bedrock data and allow measuring groundwater levels within the bedrock.

3.20 Observation Wells

Each boring was terminated with a 2-inch diameter PVC groundwater observation well. Each well was installed with a ten foot long screened section placed at a depth below the groundwater surface, as encountered during drilling. If groundwater was not encountered, the screened interval was placed at the bottom of the boring. The well risers were sealed with a two-foot thick bentonite seal to minimize infiltration of surface water. Locking caps and padlocks were fitted to the top of each well riser for protection. Each of the wells that had water was developed by bailing three times its volume of the water until sediment free water was produced. Well installation details are included on the boring logs in Appendix 2.

3.30 In-situ Permeability Tests

In-situ permeability (hydraulic conductivity) tests were made at eight boring locations prior to well installation. Table 6 lists wells in which each in-situ permeability test was performed, and provides a summary of the test results. The permeability of the unconsolidated deposits above the bedrock surface was estimated by means of falling head tests, also known as slug tests. Falling head tests were made by measuring the rate of water drop within watertight casings above a peastone-filled wick. Specific test results are included in Appendix 3.

Wicks of precise geometry were formed by extracting the 4-inch casing a measured height and simultaneously filling the resulting cavity with peastone. The watertight casing was then filled with water and the rate of drop of water was recorded vs. time. The rate of water drop was measured by means of a stopwatch and an electric water level meter.

Estimated permeabilities range from about 0.008 feet per day in boring S-11 to 0.2 feet per day in boring S-13. The average permeability was 0.06 feet per day. Based on the geometries of the wicks, these values are primarily horizontal permeabilities. The falling head tests were typically performed in the glacial till soil. However, recovered samples and SPT "N" values indicate that the gradation and the density of the unconsolidated material are highly variable at the site, thus impacting the soil's ability to transport water.

3.40 Groundwater Levels

Levels of groundwater were recorded in the observations wells by measuring the depth of water using an electric water level meter. Measurements were made during and immediately following drilling. Since water was used to wash out the casing and at some borings to core bedrock, these measurements (shown on the boring logs) do not reflect stabilized readings. Stabilized groundwater level readings were measured on several occasions in May and June 2005. This data is included in Table 1 and has also been plotted, as shown on Table 2.

4.0 SITE GEOLOGY

4.10 Geologic Setting

Large-scale published surficial geologic mapping, (Lower Hudson Sheet, Compiled and edited by Donald H. Cadwell, 1989) classifies the entire site as being overlain by Till with a notation that where the till is underlain by Gneiss it "tends to be sandy".

4.20 Geologic Materials

The generalized stratigraphy based on materials encountered in the borings is as follows:

Topsoil	 12 to 24 inches thick mixture of forest litter and organic topsoil/subsoil
Glacial Till	 Underlies the Topsoil and subsoil Dense to very dense mixture of sand, silt and gravel with cobbles and boulders Extends to top of Bedrock surface
Bedrock	 Depth to bedrock ranges from approximately 14 to 49 feet below grade. Moderately hard, slightly weathered gray Gneiss, trace quartz Recovery ranges from 27 to 95% Rock Quality Designation ranges from 12 to 77% Maximum depth of rock coring below rock surface was ten feet.

A detailed summary of bedrock data is shown on Table 9.

5.0 LABORATORY TESTING PROGRAM

We performed laboratory gradation analyses on ten soil samples recovered in the borings. The gradation analyses were used to confirm visual classifications made in the field. Also, gradation results were used to approximate the coefficient of permeability using the Kozeny-Carman Method. Gradation test results and a summary of the Kozeny-Carman permeability data is attached as Appendix 4.

Estimated permeabilities determined using this method are generally within one order of magnitude of those determined from field testing.

6.0 SITE HYDROGEOLOGY

The objectives of this section are to evaluate the groundwater regime of the proposed South Area and surrounding downgradient region, and to analyze groundwater behavior (levels, flow patterns, flow direction, and flow velocities) under existing and projected conditions. This section describes the extents and characteristics of the aquifer. Section 7.0 presents and discusses the computer flow model that describes the physical behavior of the hydrogeologic system.

6.10 Aquifer and Aquifer Boundaries

The Glacial Till and upper portions of the underlying Gneiss Bedrock form the aquifer at the site. The South Area is a regional topographical high point, with grading decreasing to the west towards Lake Carmel, and to the east towards off-site wetlands/marsh areas adjacent to Interstate I-84. A surface drainage divide exists in the northwest corner of the South Area, near wells S-9 and S-13. Approximate pre-development groundwater contours are depicted on Figure 3. This plan is based on groundwater data measured in May 2005. The approximate location of the groundwater divide is depicted on Figure 3 as a dashed line.

6.20 Aquifer Characteristics

The most important aquifer characteristics that affect steady-state groundwater flow direction and elevations are permeability and saturated thickness. Together these yield transmissivity. Permeability (hydraulic conductivity) is a measure of the ease with which water will move (flow) through a unit volume of the aquifer at a given flow gradient. The transmissivity is the product of the aquifer thickness and the permeability. Transmissivity was estimated by two methods: 1) using the estimated permeability from falling head testing discussed in Section 3.30 together with the aquifer thickness (from the borings) as a starting point to set up a groundwater model, and 2) adjusting the permeability values to calibrate the model to observed water levels using estimated groundwater recharge (base flow) values. The groundwater model and its calibration are presented in Section 7.0

6.30 Groundwater Sources and Discharge

Since the proposed South Area is a regional high point, the only source of groundwater at the site is precipitation that recharges into the ground. Precipitation historically averages about 40 inches per year in this locale, and was about 50 inches per year in the twelve months preceding the study period. The majority of this precipitation is lost to surficial runoff and evapotranspiration.

Discharge from the aquifer occurs along the previously described downgradient boundaries in the form of flow to the off-site wetlands and Lake Carmel.

In the post-development condition, we have adjusted the groundwater recharge based on proposed changes to the site. These include increasing flows by recharging 11,000 gpd over the approximate 280,000 square feet of effective recharge area. Post-development conditions also include decreasing recharge flows by decreasing recharge due to paving site access roads, parking lots, and the construction of buildings.

Details concerning each of these groundwater sources and discharges are provided in the following sections.

6.40 Precipitation, Estimated, and Published Base Flow Data

Precipitation and base flow data for this locale was researched to provide input into the groundwater model and supplement the data measured on-site.

Long term (historical) and recent precipitation data was obtained from National Oceanic and Atmospheric Administration (NOAA) National Weather Service (NWS) sources from nearby observation stations to compare precipitation during to the testing period to historical mean data. Long period historical data was obtained from the Poughkeepsie, NY observation station. This data, which includes monthly precipitation from 1896 to 2005, is included in Table 3. More recent precipitation data from the airports at Danbury, CT, White Plains, NY and Poughkeepsie, NY, is included in Table No. 4A and the attached graph (Table 4B) from January 2003 to June 2005.

A rain gauge was installed adjacent to the fenced cell phone tower on May 1, 2005. This gauge recorded hourly rainfall data to compare site-specific rainfall with published data from the nearby weather stations. The rain gauge data has been included on Tables 4A and 4B for the months of May and June 2005. Additionally, Table 5A compares the precipitation recorded at the onsite rain gauge to the historical data at Station KPOU in Poughkeepsie. Table 5B depicts daily rainfall events from May 1, 2005 to July 6, 2005.

Specifics on the distances from these stations to the site, precipitation data for Carmel, NY obtained from published sources, and a summary of representative precipitation data applicable to the site are included in Table No. 7.

The basis for groundwater recharge at the site is provided on Tables No. 8A and 8B. As indicated on Table No. 8A, the published average groundwater recharge (groundwater runoff) for nearby watersheds with unconsolidated till deposits is about 8.27 inches per year or 0.69 inches per month. Taking into account seasonal variations in recharge (due to variations in precipitation, snow cover, temperature, and evapotranspiration), as shown on Table No. 3, 4A and 4B, we selected an annualized steady-state groundwater recharge rate (base flow) of 15 inches per year or 1.22 inches per month during the period May and June 2005. We also estimated a post-development groundwater recharge rate applicable to portions of the site post-development (e.g. after paving, etc.). This rate is 7.5 inches per year as summarized on Table No. 8B.

Year to year variations in groundwater recharge (base flow) for nearby watersheds obtained in a published report prepared by the USGS were also reviewed for comparison. Specifically we reviewed data presented in the USGS report titled "Stream, Base Flow, and Ground-Water Recharge in the Housatonic River basin, Western Massachusetts and Parts of Eastern New York and Northwestern Connecticut". This data indicates that the ratio of maximum base flow to mean base flow (max/mean) for eleven stream-flow gauging stations ranges from 1.4 to 1.6 year to year over a 30 to 60 year record period. In our evaluation (Table No. 8A) we used a factor of 1.5 for the maximum to mean base flow season to season based on seasonal fluctuations in precipitation.

Selected USGS references are included in Appendix 9.

7.0 HYDROGEOLOGICAL ANALYSIS (GROUNDWATER MODEL)

The purpose of the following analysis was to develop a model of the general groundwater flow patterns at the site, and more particularly in the vicinity of the proposed subsurface disposal system. A three-dimensional groundwater flow computer model was developed for the purpose of predicting flow pattern with a reasonable degree of reliability. This section describes the model, outlines the limitations of its predictive capabilities, describes the model calibration, describes the flow conditions which were simulated, and presents conclusions.

7.10 Model Description

The direction and rate of groundwater movement can be described by the use of mathematical equations. These can be solved using a numerical (computer) model. The selected model was developed by The Scientific Software Group and is called Groundwater Vistas, version 2.61. This model is the MODFLOW finite-difference numerical model originally published by the USGS (McDonald and Harbaugh, 1984 and 1988), with computer interface enhancements. Due

to the very steep grades at the site and the resulting large cell-to-cell changes in ground surface elevation across the model, the simulation was performed using the "confined" layer option. In addition, a steady-state simulation was performed so that variations in water levels over time were not modeled and the aquifer's storage coefficient did not need to be taken into consideration.

The development of the model proceeded in the following general sequence. The model limits are defined on Figure 5-1 (Appendix 5). A rectangular grid was superimposed over the study area. One hundred foot square cells (grids) were used for the entire site except in the areas where no groundwater data was available. Grid spacing was gradually increased to 400 feet at the edge of the model. The grid is depicted on Figure 5-1. Each square or rectangle on the grid represents one cell of the model. Data can be varied for each cell as described below.

Despite varying topography (ground surface), a constant top elevation was used throughout the model. This elevation (El. 900 feet) was chosen as being several feet higher than the highest ground surface elevation in the entire model area (near the middle of the South Area). This practice is common in groundwater modeling in situations where large areas are modeled.

The aquifer was modeled in three-dimensions using one layer, which was used to model flow through both the soil and the bedrock. Based on bedrock conditions (type and quality) where it was cored, a ten foot thickness was added to the thickness of the unconsolidated deposits to simulate groundwater flow in the upper portion of the bedrock. The bottom elevation at the center of each grid is shown on Figure 5-2. These elevations are graded following the color spectrum from orange (high elevations) to blue (lower elevations). These bottom elevations are also depicted on Figures. 5-3 and 5-4, which consist of representative cross-sections north-south and west-east across the site, respectively.

Constant head boundary conditions were modeled in five areas. These locations were inferred based on features observed on USGS surficial mapping for the area. Some of these features are visible on the Locus Plan (Figure 1). By definition, the groundwater levels in these cells do change, regardless of changing parameters within the rest of the model. On the west edge of the model, Lake Carmel is modeled with a constant head of Elev. 619. Off-site wetlands to the east of Interstate I-84 were modeled at a constant head of Elev. 740. At the southeast corner of the model, a constant head of Elev. 660 was used. Another small mapped wetlands area north of the site was modeled as a constant head at Elev. 650. The existing Interstate I-84 is bordered with swales to collect surface water and control groundwater levels. These swales were simulated in the model with the use of constant head boundaries set at a depth of ten feet. Figure 5-1 depicts constant head cells as a blue shade.

All model units are stated in feet and days. Thus, distances, elevations, and depths are in feet; permeabilities (hydraulic conductivities) are in ft/day; recharge flow rates are ft³/day; velocities are in ft/day.

The hydraulic characteristics of the aquifer were entered at each cell. The soil vertical permeabilities were entered as one-tenth of the horizontal, representing anisotropy (K_h/K_v) of 10. The final (calibrated) horizontal soil horizontal permeabilities are shown on Figure 5-5.

The groundwater recharge was entered in each cell at 0.00334589 ft/day or 15 inches/year as discussed in Section 6.4.

7.20 Model Results, Calibration and Limitations

The groundwater model and results are provided in Appendices 7 and 8, respectively. The model was then calibrated by comparing the simulated results to known groundwater levels and flow patterns. Based on the results of the simulation, the hydraulic parameters were adjusted until the simulation accurately reflected known groundwater level conditions as measured in the observation wells. This process was repeated until a satisfactory match was achieved.

The groundwater elevations that result from the model run for the existing conditions (following model calibration) are included in Figure 5-6.

Specifically, the model was calibrated to existing conditions using "targets", or locations where groundwater levels are known, e.g. at observation wells. The targets represent the minimum depth to groundwater that was measured between May and June 2005, or the highest groundwater observed during this time period. The results of the final calibration are summarized on Table No. 10, and also in Figure 5-7 (Appendix 5). As shown on the table, modeled groundwater elevations "match" actual measured elevations within plus or minus 1 foot. This calibration is deemed to be acceptable in consideration of observed groundwater level variations in the wells within a few days of the date when peak levels were recorded.

It must be recognized that the calibration is limited to locations where existing water level data is available (e.g. where wells were installed and water was present). For example, since groundwater was not observed in well S-6, the calibration of the model at this location is not as precise as elsewhere within the South Area. Where groundwater data was unavailable, the model results were reviewed and permeabilities were adjusted by using values similar to those measured in the field for similar soil types. In this manner, the permeability matrix was adjusted to achieve groundwater contours that more approximately parallel ground surface elevation contours than those that resulted in the initial model runs.

We also note that the northwest corner of the South Area is hydrogeologically complex, in part due to the proximity to oddly shaped surface and groundwater divides. The groundwater surface elevations do not mimic ground surface elevations in this area (e.g. depth to water is highly variable). Hydraulic gradients are also highly variable in this area. For these reasons, despite the good match at the targets, the modeled groundwater elevations for the pre-construction condition include a peak between observation wells S-12 and S-9A that does not reflect actual conditions.

7.30 Post-Construction Changes to Aquifer Geometry

The model grid, soil/bedrock strata geometries, and constant head boundaries were unchanged for the post development model. Therefore the information presented in Figures 5-1 through 5-4 is applicable to the simulated (proposed) condition.

However, in the post-construction model, several new targets were used to compare groundwater levels near the proposed emergency access drive cut. Instead of representing groundwater levels, these targets represent the proposed ground surface elevations (following construction of the emergency access drive). In our model, these values range from El. 840 to 860, and can be seen on Figure 6-1. These targets were used to assess the possibility of groundwater breakout to the east and downgradient of the proposed disposal area.

7.40 Post-Construction Changes to Aquifer Transmissivity

Increasing the groundwater recharge in the area of the proposed leaching fields will increase the groundwater flow in and near these areas and downgradient of these areas. In turn, this increased flow will result in an increased saturated flow thickness in the soil stratum and a corresponding increased recharge flow will result in increased transmissivity of the aquifer. This was accounted for by increasing the permeability of the soil stratum near to and downgradient of the proposed leaching fields by thirty percent of their originally calibrated (pre-construction) values. The methodology used to estimate this increase is detailed on Table 11. The resulting soil permeabilities for the post-construction model are listed on Table 12.

7.50 Simulated Flow Patterns

The post-construction groundwater recharge, which includes the proposed leaching field flows and the reduced recharge in newly built-upon areas (as described in Section 6), are shown on Figure 6-1. On this Figure, the blue area remains constant, simulating only recharge due to precipitation. The red area is a reduced recharge area, simulating the paved/constructed condition. The remaining area is the South Area, where the 11,000 gpd flow is introduced to the ground. The basis for the recharge rates included on this figure is included in Table No. 8B. At the west side of the area, where the depth to groundwater is generally higher, a lower flow (9,000 gpd) was used. At the east side of the area, where groundwater is deeper, a higher flow (13,000 gpd) was used. A flow rate of 11,000 gpd was used in the middle of the area. Since each subarea is similarly sized, this results in an average modeled recharge rate of 11,000 gpd for the South Area overall.

The predicted post-construction groundwater contour elevations are depicted on Figure 6-2. These predicted groundwater levels are representative of conditions which will exist once the property improvements have been made, the proposed maximum steady-state subsurface discharge system flow of 11,000 gpd has been reached, and a steady precipitation-induced groundwater recharge (base flow) rate of 15 inches per year condition exists.

As noted in Section 7.20, a groundwater peak occurs between observation wells S-12 and S-9A in the model of existing conditions (pre-development model). This peak also exists in the post-development model in the same location. However, comparison of the pre-development and post-development models reveals no significant changes in groundwater elevations at this location. Therefore, the simulation at this location is not representative and does not predict flooding or breakout.

The predicted rise (mounding) of the groundwater levels under this simulation is represented by Figure 6-4. This figure depicts the predicted riser in groundwater from the calibrated results shown on Figure 5-7. The sign convention of the model output is such that a negative number actually represents a rise in the groundwater level. (For example, a value of -10 indicates a 10-foot rise in groundwater due to the 11,000 gpd recharge.)

In summary, except at three localized areas, the predicted maximum height of the groundwater mound is sufficiently below the ground surface such that breakout is not expected, nor is flooding of the disposal system anticipated. (e.g. depth to groundwater is greater than two and three feet beyond and within the proposed disposal area, respectively.) As shown on Figure 6-4, three target locations predict a groundwater rise, which would flood the bottom of the disposal system if not addressed. At each of these locations, we recommend adding a thickness of two feet of sand and gravel fill to raise the bottom of leaching system, and/or adding two feet of common fill beyond the proposed leaching areas. This will maintain the post-development groundwater levels below the leaching trenches and prevent breakout.

7.60 Simulated Groundwater Flow Velocities

The average rate at which groundwater moves between two points, its flow velocity, can be determined by the following equation:

 $\mathbf{v} = (\mathbf{k}^* \mathbf{i}) / \mathbf{n}$ where,

v = velocity of groundwater flow, (FT/DAY)
k = soil permeability, (FT/DAY)
i = hydraulic gradient = ΔH/ΔL (FT/FT)
n = soil porosity, dimensionless, conservatively taken as .30 for soils such as those encountered on site.

A porosity of 0.3 was entered into the model, and the predicted average groundwater flow velocities are depicted on Figure 6-3. As shown on this figure velocities range from about 0.03 to almost 0.06 feet per day in the area between the edge of the proposed leaching fields and the downgradient property line to the west. This property line is considered the most critical area in

this model due to the presence of domestic water supply wells on the neighboring parcels. Predicted velocities range from 0.02 to 0.14 feet per day.

7.70 Estimated Effluent Travel Time

The average travel time that it will take the septic effluent to travel from the closest disposal area to the nearest property line can be expressed as follows:

t = d/v where,

t = travel time, (DAYS) v = velocity (FT/DAY) d = distance to point of concern, (FT)

The minimum distance between the nearest proposed leaching trench and the property line is approximately 175 feet. Conservatively neglecting the time for the effluent to reach the groundwater surface and considering the shortest horizontal travel distance and the highest predicted groundwater velocity, we estimate a minimum travel time of approximately 1,250 days (175 feet / 0.14 feet/day), or about three years.

8.0 CONCLUSIONS

The site of the proposed Patterson Crossing development on Route 311 in Patterson and Kent, New York has been the subject of a hydrogeological investigation for the purpose of predicting the groundwater flow conditions under proposed subsurface disposal of sewage at the South Area, generated from the proposed commercial development.

Based on the results of the field investigations, review of precipitation data, review of published USGS geological and groundwater data for this locale, hydrogeological analyses including the preparation of a three-dimensional computer model, we have been able to make reasonable predictions (simulations) of the groundwater flow conditions at the site. These predictions were made after the groundwater model was first calibrated to known groundwater flow patterns at the site. Following calibration, a simulation was performed using a proposed 11,000 gpd sewage flow rate in the area of the proposed subsurface disposal system shown on Figure 2 (Appendix 1). We also considered the effect of the site development on the groundwater recharge and on the aquifer properties.

Based on the results of this simulation, we conclude that, aside from localized areas, the minimum predicted depth to the groundwater mound is approximately two and three feet beyond and within the proposed disposal area, respectively. Thus, the simulation does not predict breakout of the leachate above the ground surface or flooding of the leaching trenches. However, as noted in Section 7.50 within the areas depicted on Figure 6-4, we recommend that 1) within the proposed disposal area, the vertical separation from the bottom of the fields to the

groundwater be increased by adding a minimum thickness of two feet of sand-gravel fill, and 2) beyond the proposed disposal area, a minimum of two feet of common fill be placed to raise site grades and prevent breakout.

Also based on the simulation, we estimate a minimum travel time of approximately three years for the leachate to reach the nearest property line, located approximately 175 feet west of the nearest proposed leaching trench. This travel time is sufficient to provide adequate treatment of the septic effluent.

9.0 LIMITATIONS

This report is subject to the limitations included in Appendix 10.

Tables and Graphs

Table 1

Groundwater and Well Data - South Area

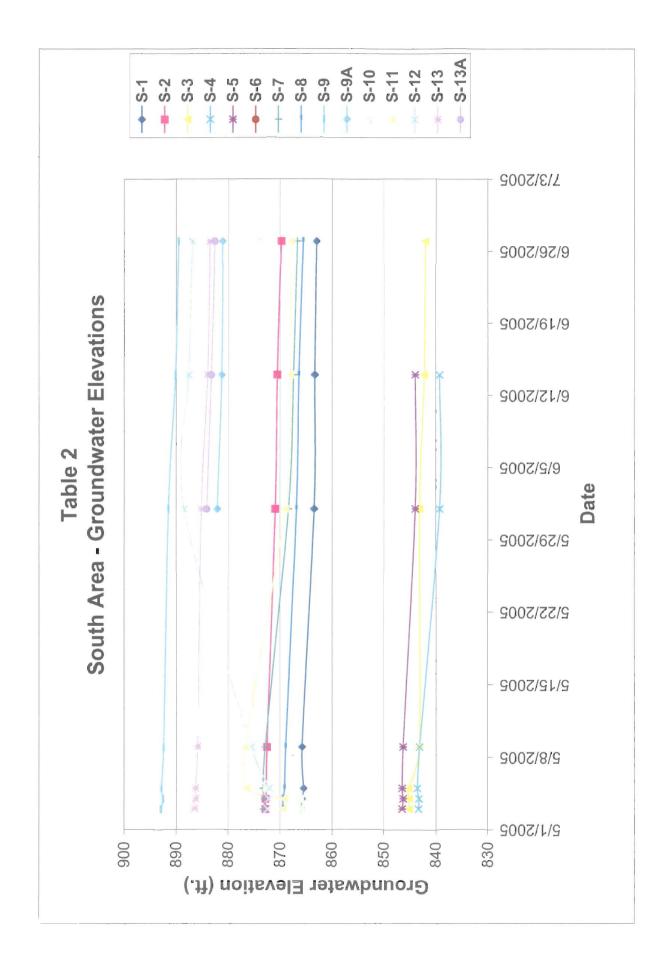
Patterson Crossing

Patterson and Kent, New York

1										-	_	_		_	_	_	
	8/15/2005	Elev.	866.06	873.00	841.64	Dry	Dry	Dry	866.41	866.00	887.53	888.20	870.82	875.19	871.36	881.18	881.55
	DTW	from max	23	24	22	15	16	23	6	24	2	12	7	10	4	4	4
May/June Data Only	Range between	Min and Max	2.8	3.0	3.2	4.2	2.5	0.0	6.5	3.8	3.4	11	9.3	8.8	16.5	3.0	1.6
May/Ju	Mean	Elev.	864.7	871.7	843.8	842.0	845.6		870.7	868.0	891.7	881.5	871.7	871.0	879.3	885.4	883.4
	Min.	Elev.	863.1	869.8	842.1	839.3	844.0		866.7	865.6	889.5	881.1	865.9	868.0	872.0	883.5	882.6
	Max	Elev.	865.9	872.8	845.3	843.5	846.5		873.2	869.4	892.9	882.2	875.2	876.8	888.5	886.5	884.2
	6/27/2005	Elev.	863.06	869.80	842.09	Dry	Dry	Dry	866.73	865.60	889.53	881.10	873.98	867.99	886.91	883.53	882.60
	6/14/2005	Ëlev.	863.36	870.50	842.29	839.33	843.99	Dry	867.43	866.40	890.13	881.30	874.38	868.09	887.61	884.03	883.30
	6/1/2005	Elev.	863.46	870.90	843.19	839.33	843.99	Dry	868.43	866.90	891.53	882.20	874.18	869.09	888.51	885.23	884.20
	5/9/2005	Elev.	865.76	872.50	843.19	843.13	846.29	Dry	872.83	868.90	892.43		875.18	876.79	875.51	885.93	
	5/5/2005	Elev.	865.46	872.60	845.29	843.53	846.49	Dry	873.23	869.10	892.83		872.48	876.49	872.01	886.33	
	5/4/2005	Elev.	865.76	872.80	845.19	843.23	846.29	Dry	872.93	869.40	892.53		866.08	869.29	872.11	886.33	
	5/3/2005	Elev.	865.86	872.80	845.19	843.33	846.49	Dry	873.13	869.40	892.93		865.88	869.49	872.41	886.53	
	Well Depth	Below GS	48	43	26	22	28	17	23	35	33	15	25	49	39	31	15
	Stickup		2.05	2.49	2.58	2.15	1.94	2.17	2.82	2.23	1.99	2.60	2.58	2.70	2.28	2.37	2.50
	G.S.	Elev.	889.21	896.51	867.01	858.88	862.75	861.25	882.11	893.47	894.74	894.50	886.00	886.99	892.33	888.16	888.00
	Ref.	Elev.	891.26	899.00	869.59	861.03	864.69	863.42	884.93	895.70	896.73	897.10	888.58	889.69	894.61	890.53	890.50
	Nell	No.	S-1	S-2	S-3	S4	S-5	S-6	S-7	8-S	8-9	S-9A	S-10	S-11	S-12	S-13	S-13A

Notes:

Ref Elev. = Reference Elevation marked on top of PVC well stickup inside casing.


DTW = Depth to Water Below Ground Surface

GS = Ground Surface

4) Elev. = Groundwater Surface Elevation

5) All data is stated in feet.

6) Well locations located by GeoDesign by taping from existing site features. Well elevations surveyed by Insite Engineering.

Precip.													
Precip					Historical	Precipitation Poughkeep	n at Station osie, NY	KPOU					
		_											
(in)	J	F	м	А	м	Mo J	o nth J	А	S	0	N	D	TOTAL
1835	-		-	-	-		-	-	-	•		-	
1836 1837	<u>.</u>		-	-	-		-		-	-		-	
1838	-		-	•	-	-	-	-		-			-
1839 1840	-			•	-	-	•			-		•	-
1840	<u>.</u>	-		-	-		-			-	-		
1842	•	-		-	-		-	•	-	-	-	-	-
1843	<u> </u>								-		-		-
1845	-		-	-	•	-	-	-	•	•	-	-	-
1846 1847	<u>.</u>	-		-	-		-			-		-	-
1848			· ·	-		-	-			-	-		-
1849	•.	-		-	-		-	-	-	-	-	-	
1850	<u> </u>			-		<u> </u>	-	-		-		-	
1852	•	•	•	-	-			•	-	-	-		•
1853 1854		<u>:</u>		-	-		-	<u>.</u>					
1855	-	-	-	-	-	-	-	-	-	-	-	-	
1856 1857		-	-	-	-		-	-	-			•	-
1858			-	-	-		-					-	-
1859	-	-	-	-	-		-	-	-	-	-	-	-
1860	-	-	-	-	-							<u> </u>	
1862	•		-	-	-	-	-	-	-	-	•	-	-
1863	-		•	-	-	<u> </u>	-		-				-
1865	-	-	•	-	•	-	-	-	-	-	-	-	•
1866	<u>.</u>	-		-	-	-		-	-		-	-	-
1868	-			-	-			-	-	-		-	-
1869 1870	-	-	-	-	-	-	•	-	-	-	-	-	•
1870	•			-	-		-		-	-			-
1872	-	•	•	-	-	-	•		-	-	-		-
<u>1873</u> 1874	<u>.</u>			-	-					-			•
1875	-	-	-	-	-	-	•	-	-	-	-	-	-
<u>1876</u> 1877	-			-	-	-		-	-		-	-	
1878		-	-	-	-	-	-		-	-	-	-	-
1879 1880	•	•	•	-	-	-	-	<u> </u>		-	-	-	-
1880	-			-			-	-	-		-	-	
1882	-	-	-	•	-	-		-	-		-	-	-
1883 1884	<u> </u>						-		-		-	-	
1885	-	-	-	-	-	-	-	-	-	-	-	-	-
1886 1887	•			•	-		•		-	•	-	•	-
1888		-	-	-				-	-	-	-	-	-
1889	•	-	-	-	-	-	-	-	-	-	-	-	-
1890	· ·			-	-	-	-			-			
1892	-	1.00	2.30		-		5.86	-	-	-	-	-	-
1893	2.17	6.24	-	-	-			1.37				-	-
1895	-	•	-	-	-	-	-	-	1.16	3.45	3.70	3.03	•
1896 1897	1.05	5.49 2.22	6.12 2.74	0.87	3.28 5.42	3.57 2.77	3.96 15.71	2.92	4.30	2.31	2.98	1.37	38.22
1898	3.54	3.46	2.74	3.35	<u>5.42</u> 6.38	0.95	3.87	3.75 8.77	1.62 3.35	1.06	4.46 3.16	4.39 2.68	48.66 46.82

			-			Table	3						
						Precipitation Poughkeep	at Station H	KPOU					
Precip.					<u></u> .	Foughkeep		-					
(in)						Mo	onth						
	J	F	M	A	M	J	J	A	S	0	N	D	TOTAL
1899 1900	2.70	<u>4.00</u> 5.33	5.32 3.36	1.69	1.75 4.20	4.57	5.84 4.28	0.86	6.51 2.78	1.26	1.78	1.79 2.07	38.07 38.62
1901	1.57	0.70	4.88	8.26	6.43	1.23	6.47	7.20	3.59	2.28	1.66	6.16	50.43
1902	2.38	4.13	4.12	3.28	2.33	4.55	7.57	2.34	6.21	5.56	0.99	5.37	48.83
1903 1904	3.09 2.51	4.40	3.88	2.61	0.74	10.90 2.65	<u>3.26</u> 4.48	7.96	2.29 4.20	6.17	1.53	2.73	49.56 36.65
1905	3.27	1.35	2.75	2.28	0.79	4.10	4.30	4.46	4.79	2.16	1.74	2.73	34.72
1906	2.56	2.05	3.72	4.82	3.71	2.84	6.36	3.10	2.26	3.56	1.43	4.21	40.62
1907 1908	3.19 2.38	2.39	2.08	2.15 2.11	3.50 5.93	3.42	<u>2.53</u> 4.48	2.04	<u>6.11</u> 0.78	<u>4.95</u> 1.99	4.35	<u>4.39</u> 2.43	41.10 33.25
1909	3.00	4.79	2.66	5.41	2.25	2.15	2.96	5.46	3.60	0.90	1.31	3.66	38.15
1910	4.93	2.86	1.03	4.77	2.77	4.38	2.10	4.11	2.04	1.39	3.43	2.05	35.86
1911 1912	2.20	2.61	2.99 5.87	2.80	1.88	5.43 1.54	2.82	6.46 3.66	2.44	<u>5.67</u> 2.86	2.67	<u>3.01</u> 4.12	40.98
1912	3.13	2.29	4.68	4.52	2.50	1.04	1.64	3.62	3.13	6.46	2.18	2.47	37.64
1914	3.57	2.03	3.77	3.24	2.65	2.80	4.63	2.01	0.24	2.52	2.48	4.10	34.04
1915 1916	4.79	4.75 3.34	0.42	<u>1.75</u> 2.71	2.10	2.79	6.10 6.50	7.30	2.32	2.57	2.65	5.73 4.09	41.70 35.94
1916	2.79	1.67	3.04	1.71	2.66	3.60	2.55	1.99	0.95	4.61	1.05	2.77	29.07
1918	3.33	2.19	1.39	4.10	3.52	3.44	4.69	3.36	3.42	1.23	2.31	3.82	36.80
1919	2.70	2.96	4.46	2.66	3.99 1.93	2.03	7.17 4.26	4.40	4.21 5.75	3.17	4.01 3.04	2.55	44.31 43.81
1920 1921	2.19 2.10	4.33	3.04	<u>3.83</u> 4.94	2.07	5.21 3.38	4.20	2.81	2.60	1.07	3.72	2.04	34.75
1922	1.12	2.35	3.54	2.40	4.64	6.49	5.68	3.47	2.02	1.88	0.97	3.20	37.76
1923	4.22	1.87	2.43	2.98	2.33	3.32	3.07	1.82	2.87	3.87	3.90	3.44	36.12
1924 1925	3.60	2.46	0.90	5.35	4.60	<u>1.79</u> 4.13	1.94 7.10	2.34	4.38 2.97	0.44	2.12	1.66	<u>31.58</u> 39.27
1926	1.82	3.91	1.77	2.47	1.50	2.34	3.62	4.66	2.71	3.78	3.08	2.54	34.20
1927	2.17	2.51	1.40	2.20	5.15	2.80	4.08	6.59	2.89	5.57	7.14	4.34	46.84
1928 1929	2.05	3.86	2.11	4.52	2.32	7.06	7.92 2.67	8.27	2.64	0.75	2.26	1.09	<u>44.85</u> 38.23
1930	2.13	1.80	2.28	2.07	3.04	4.22	2.72	3.48	2.22	1.20	3.65	2.57	31.38
1931	1.39	1.77	2.60	3.07	4.93	5.91	6.55	3.73	1.46	1.82	1.31	2.44	36.98
1932 1933	<u>3.00</u> 1.31	1.83	3.24	1.79 4.52	3.09	3.01 2.70	4.24	4.34 9.25	1.65 5.48	<u>5.60</u> 2.10	0.99	1.76	40.82 39.58
1934	2.36	2.14	2.74	3.93	4.31	3.62	5.44	2.75	8.14	2.20	4.25	2.22	44.10
1935	3.32	2.45	1.84	3.08	1.79	3.45	3.56	1.29	2.92	2.35	4.83	1.09	31.97
1936 1937	3.94	2.86	4.99 2.73	<u>3.38</u> 4.51	2.48	<u>3.38</u> 6.38	4.34	<u>6.99</u> 3.91	3.13 3.11	3.19 2.96	1.71 2.92	4.66	45.05 44.15
1937	2.95	1.55	1.61	2.06	4.08	5.95	7.08	5.97	9.85	1.83	2.92	2.52	47.99
1939	2.26	3.78	2.75	4.28	1.18	2.48	2.70	2.04	2.24	4.27	1.32	1.22	30.52
1940	0.98	2.01	3.66	4.69	5.58	3.33	4.45	3.13	2.64	2.00	4.35	2.88	39.70
1941 1942	2.17	2.22	0.95	0.78	<u>1.64</u> 2.79	4.80	<u>5.01</u> 4.03	2.39	0.87	1.78 3.87	1.92	2.64 4.59	40.69
1943	2.67	1.56	2.58	3.14	5.51	4.46	6.47	1.10	1.73	6.67	3.70	0.51	40.10
1944	0.98	1.33	4.22	3.28	1.79	5.08	3.50	0.61	4.87	1.45	4.88	2.98	34.97
1945 1946	4.06	3.50	1.89	4.77	7.49 4.61	5.82 2.93	10.77 5.97	5.73 2.95	5.60 3.68	2.40	4.41	<u>3.81</u> 2.12	60.25 31.28
1948	2.53	1.84	2.39	4.30	5.06	4.32	4.36	3.24	2.85	2.43	6.09	3.18	42.59
1948	3.06	1.92	3.12	4.57	4.41	4.34	2.10	2.35	0.78	1.99	3.85	7.40	39.89
1949 1950	4.69	2.48	1.19 2.80	2.37	4.60	0.99	<u>3.19</u> 4.12	4.26	2.54	2.34	1.90 5.69	4.03	<u>34.58</u> 40.49
1950	3.30	3.28	5.07	2.42	3.78	3.52	3.53	5.87	3.17	3.62	5.26	3.50	46.79
1952	4.01	1.69	3.28	7.41	5.33	4.96	4.32	5.87	4.73	0.85	2.35	3.69	48.49
1953	4.09	2.23	6.63	5.58	5.22	3.15	2.52	2.19	2.33	4.31	1.86	4.64	44.75
1954 1955	<u> </u>	1.88	3.07 4.38	2.97 3.62	4.57	2.37	2.09	5.18 12.71	5.48 2.59	1.45	6.77	<u>3.27</u> 0.54	39.82 47.24
1956	1.84	3.63	3.71	4.41	2.78	1.68	4.36	1.72	6.30	2.49	1.72	4.25	38.89
1957	1.80	1.15	2.13	4.60	2.94	1.19	2.23	1.66	2.29	3.11	3.05	5.71	31.86
1958 1959	4.32 2.92	2.54	3.60 2.43	<u>6.01</u> 3.01	3.85	1.82	2.92	2.20	<u>3.95</u> 0.72	<u> </u>	3.73 3.26	2.93	40.60 37.59
1959	2.92	2.50	1.71	3.13	3.51	4.75	5.65	2.28	6.08	2.21	1.76	1.63	37.86
1961	2.35	3.47	3.08	4.78	4.10	3.14	2.96	1.99	2.52	1.54	4.12	2.69	36.74
1962	3.03	5.20	1.11	2.94	1.36	2.82	1.43	3.85	1.91	2.59	2.33	2.99	31.56

Precip.													
(in)	J	F	м	А	м	J Mo	onth J	А	s	0	N	D	тот
1963	2.69	2.18	2.57	1.04	1.36	4.32	4.16	1.81	3.12	0.36	5.36	2.22	31.
1964	2.12	1.79	2.26	3.41	0.94	2.98	1.99	2.35	1.30	0.89	1.67	2.82	24.
1965	2.24	2.24	1.13	2.40	1.05	1.54	2.91	4.38	2.66	2.92	2.16	2.08	27.
1966	1.89	2.21	1.99	2.20	3.13	1.04	0.96	0.87	6.86	4.49	3.14	2.23	31.
1967	1.23	1.52	4.44	3.44	2.91	7.23	5.32	5.76	1.48	2.92	2.54	4.16	42.
1968 1969	1.20	0.72	2.51	2.37 4.21	<u>6.50</u> 3.27	5.57 4.16	0.72	2.05	3.83 3.25	2.16	3.88 6.41	<u>3.87</u> 4.15	36. 41.
1970	0.43	2.97	2.01	3.82	2.96	2.96	1.89	4.03	3.31	2.93	3.96	3.10	34.
1971	1.68	3.58	1.99	2.62	5.03	1.47	5.22	10.92	3.98	3.51	3.41	2.70	46.
1972	2.23	3.53	3.22	4.75	7.74	7.99	4.13	2.14	1.93	3.68	8.11	5.33	54.
1973	2.81	1.82	3.83	6.50	6.17	4.89	2.43	1.24	2.71	1.61	1.76	8.65	44.
1974	4.20	1.12	3.86	3.94	4.46	4.65	4.25	3.82	5.20	2.55	2.82	3.08	43.
1975 1976	3.51	3.11	3.99	1.88 2.28	3.14	3.99	13.63	3.15	7.19	4.31	4.35	2.98	55.
1976	3.67 1.27	2.76	1.79 6.11	4.17	3.36	2.67	5.10 1.43	7.27 3.24	<u>3.90</u> 5.95	<u>6.78</u> 4.72	0.67	2.09	42.
1978	7.09	1.13	3.38	1.08	7.08	3.29	2.83	4.14	2.76	1.97	1.70	3.38	39.
1979	6.65	3.09	2.05	3.95	5.82	1.62	2.10	4.32	5.71	4.02	3.50	1.85	44.
1980	0.64	0.92	4.55	5.18	1.86	3.62	2.79	2.50	1.83	3.15	3.07	0.57	30.
1981	0.77	5.42	0.15	4.01	4.82	3.81	3.79	0.64	2.81	4.12	1.28	3.61	35.
1982	3.76	3.15	2.78	3.63	2.97	8.39	3.58	3.86	2.14	1.60	3.00	0.93	39.
1983 1984	<u>3.72</u> 1.33	2.23 3.37	7.39 3.70	8.51 5.14	<u>6.84</u> 11.49	4.03	<u>1.28</u> 5.53	4.00	2.36	3.57	4.91	6.60 2.65	55. 41.
1985	1.00	2.04	2.58	1.71	4.19	3.34	4.66	4.68	5.31	1.72	6.11	2.05	39.
1986	3.48	3.52	2.96	1.68	2.10	5.87	9.00	2.84	0.46	2.51	5.23	3.28	42.9
1987	3.65	0.32	3.12	6.47	2.22	2.35	4.51	3.79	6.59	4.70	1.27	1.50	40.
1988	2.11	2.97	1.61	1.36	4.51	0.30	8.49	4.54	1.93	1.50	7.10	0.88	37.
1989	1.72	2.29	3.00	2.78	11.81	7.21	1.63	3.63	6.71	6.54	1.86	1.01	50.
1990 1991	4.10	3.49	3.25 3.82	3.05	6.04 5.05	3.28	3.30	7.91	<u>1.19</u> 4.81	<u>5.85</u> 4.07	2.70	5.00 3.03	49.
1992	1.30	1.92	3.08	3.12	2.83	3.34	7.18	2.81	1.98	1.31	4.60	4.16	38.0
1993	2.28	2.70	5.69	5.17	1.07	2.71	1.32	1.95	6.05	3.82	3.46	3.62	39.1
1994	3.69	2.86	5.25	3.06	3.63	5.62	5.12	5.97	3.03	1.23	3.56	2.67	45.
1995	4.49	2.52	2.53	3.76	3.51	2.34	11.27	1.80	3.30	9.98	5.40	2.62	53.
1996	7.41	2.21	3.26	6.56	3.71	4.06	11.62	1.39	5.94	7.48	2.58	7.09	63.
1997	2.68	1.47	4.11	4.86	5.15	2.24	4.29	4.52	2.70	1.83	6.01	3.50	43.3
1998 1999	<u>3.72</u> 6.16	2.54 2.53	<u>4.17</u> 5.36	4.26	6.33 3.38	10.79	2.23	2.67 4.22	<u>3.78</u> 6.94	3.74	1.39	1.06	46.0
2000	2.95	3.31	4.58	4.90	8.10	7.02	4.23	5.28	3.70	1.77	2.40	4.27	52.
2001	2.18	2.25	6.37	0.11	2.69	4.64	2.85	3.24	4.76	0.79	0.85	2.08	32.0
2002	1.03	0.87	2.39	3.96	4.51	4.12	3.84	4.05	2.74	5.63	5.18	2.91	41.
2003	2.58	2.56	3.08	1.47	3.78	4.47	2.44	4.31	9.22	4.34	4.31	3.98	46.
2004 2005	<u>1.95</u> 4.79	1.86	1.87	2.92	2.27	4.70	4.94	6.23	8.14	1.8	2.93	3.48	40.1
2005	4.79	1.58	3.88	3.70	1.95	4.70							20.
6 to 2005													
Mean	2.76	2.60	3.15	3.46	3.75	3.68	4.34	3.89	3.54	3.12	3.20	3.12	40.
Min.	0.43	0.32	0.15	0.11	0.74	0.30	0.72	0.61	0.24	0.36	0.63	0.51	24.
Max.	7.41	5.49	7.39	8.51	11.81	10.90	15.71	12.71	9.85	10.40	8.11	8.65	63.
Nedian	2.63	2.47	3.02	3.28	3.44	3.38	4.08	3.63	2.97	2.57	3.00	2.93	40.

	Monthly Preci	Table 4A pitation since Ja	nuary 2003		
	literating i reel		1101 y 2000		
Month	Poughkeepsie, NY (KPOU)	Danbury, CT (KDXR)	White Plains, NY (KHPN)	Onsite Rain Gauge	Average
Jan-03	2.58	2.60	2.07		2.42
Feb-03	2.56	2.74	1.15		2.15
Mar-03	3.08	3.86	3.90		3.61
Apr-03	1.47	2.42	2.84		2.24
May-03	3.78	4.33	4.44		4.18
Jun-03	4.47	8.87	7.98		7.11
Jul-03	2.44	4.07	1.78		2.76
Aug-03	4.31	6.83	4.57		5.24
Sep-03	9.22	7.99	7.25		8.15
Oct-03	4.34	5.03	4.35		4.57
Nov-03	4.31	4.11	4.14		4.19
Dec-03	3.98	6.19	5.45		5.21
Jan-04	1.95	1.57	1.83		1.78
Feb-04	1.86	2.21	2.62		2.23
Mar-04	1.87	3.33	3.87		3.02
Apr-04	2.92	5.31	5.31		4.51
May-04	2.27	3.11	3.92		3.10
Jun-04	1.74	2.46	3.19		2.46
Jul-04	4.94	4.75	7.04		5.58
Aug-04	6.23	2.5	3.46		4.06
Sep-04	8.14	8.1	11.5		9.25
Oct-04	1.8	2.23	1.34		1.79
Nov-04	2.93	3.87	3.86		3.55
Dec-04	3.48	4.13	3.15		3.59
Jan-05	4.79	3.98	3.89		4.22
Feb-05	1.58	2.32	2.94		2.28
Mar-05	3.88	3.35	3.59		3.61
Apr-05	3.78	5.14	4.93		4.62
May-05	1.95	2.01	1.32	2.54	1.76
Jun-05	4.7	2.75	3.81	5.22	3.75
2003 Annual Total	46.54	59.04	49.92		51.83
2004 Annual Total	40.13	43.57	51.09		44.93
May 2004 - May 2005	47.51	47.95	54.13		49.86
(12 months preceeding					-10.00
date of gw model)					

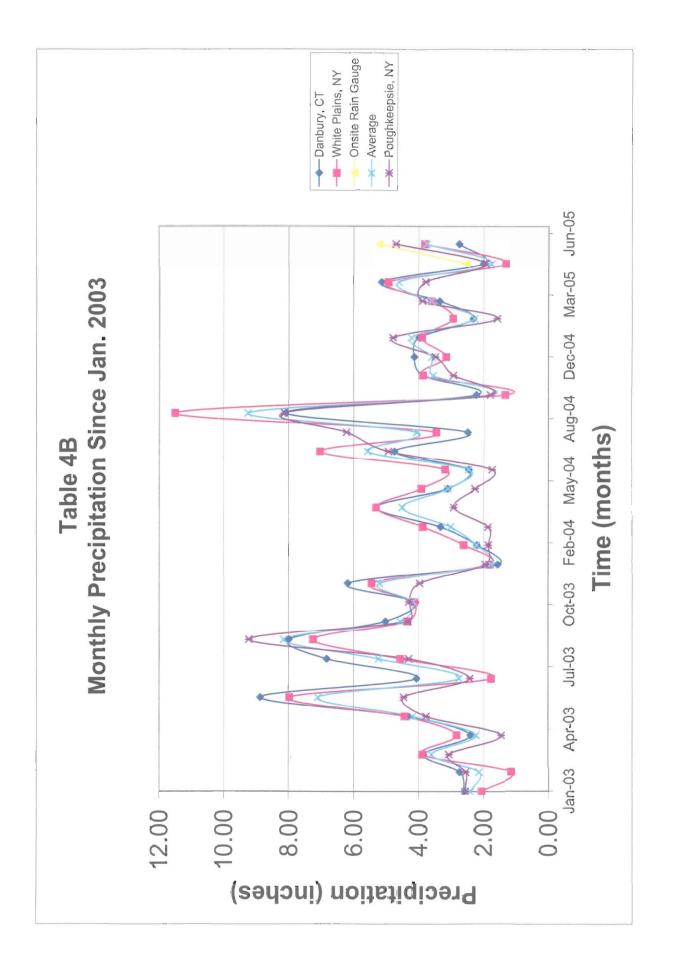


Table 5A - Monthly Precipitation Data and Comparision to Onsite Rain Gauge

Patterson Crossing Patterson and Kent, New York

Period fr	Historical Precipitation (at Station KPOU) Period from 1896 to 2005 (All data in inches)										
	Max.	Min.	Median	Mean							
May June	11.81	0.74	3.44	3.75							
June	10.9	0.3	3.38	3.68							

Onsite	Rain Gauge locati	on *
	Measured Rainfall (inches)	Deviation from KPOU Historical Mean (inches)
Мау	2.54	-1.21
June	5.22	1.54

* Rain gauge located on fence at Cell Phone tower on south side of site

Table 5BDaily Rainfall (from onsite rain gauge)Patterson CrossingPatterson and Kent, New York

Rainfall (inches)

Table 6Summary of Soil Permeability - South Area

Patterson Crossing Patterson and Kent, New York

Area	Well No.	Permeability			
		(cm/sec)	(ft/day)		
uth Area	S-1	6.87E-06	1.95E-02		
	S-2	6.76E-06	1.92E-02		
	S-8	6.37E-06	1.80E-02		
	S-9	3.85E-05	1.09E-01		
	S-10	1.82E-05	5.16E-02		
	S-11	2.80E-06	7.93E-03		
	S-12	1.63E-05	4.63E-02		
	S-13	8.71E-05	2.47E-01		

South Area:	Minimum	2.80E-06	7.93E-03	(S-11)
	Maximum	8.71E-05	2.47E-01	(S-13)
	Average	2.29E-05	6.48E-02	

	Data	Location Relative to Site	NOAA Observation Station	
Danbury CT		10 miles southeast	DXR	
Poughkeepsie N	IY	21 miles northwest	POU	
White Plains, N	(35 miles south-southwest	HPN	
plotted on Tabl A rain gauge in May 1, 2005. Ti	e 5B from January 2003 stalled at the site by Ge hese readings are inclu	oDesign obtained readings beginnin ded on the chart.	g on	
the field work v	vas as follows: (See 1	- ,	t of	
	Danbury, CT Poughkeepsie, NY	47.95 inches 47.51 inches		
	White Plains, NY	54.13 inches		
	WHILE FIGHTS, INT	54.15 inches		
	Average	49.86 inches		
	orical Annual Rainfall R	ecord at Poughkeepsie, NY (See 1	able 3 for details)	
Long term Hist	orical Annual Rainfall R Between 1896 and 2005		able 3 for details)	
Long term Hist	Between 1896 and 2005		able 3 for details)	
Long term Hist	Between 1896 and 2005 Mean	40.43 inches	able 3 for details)	
Long term Hist	Between 1896 and 2005		able 3 for details)	
Long term Hist	Between 1896 and 2005 Mean Min.	40.43 inches 24.52 inches	able 3 for details)	

Table 8A - Basis for Pre-development Groundwater Recharge

The precipitation for the 12 month period through the end of June 2005 at Poughkeepsie (KPOU) was 47.51 inches. (See Table 7) This value compares favorably to the historical mean annual precipitation at Carmel (47.40 inches).

The long term historical mean annual rainfall at KPOU was 40.43 inches. (See Table 7)

Precipitation at the onsite rain gauge was higher than the KPOU historical mean. (See Table 5A)

Adjusting the past 12 months of rainfall at KPOU to the Poughkeepsie historical mean, and applying that number to the historical Carmel data yields: (47.51/40.43) * 47.40 = 56 inches

This precipitation data, together with the site geology, topography, and vegetation was used to estimate a design infiltrated flow for the undeveloped (pre-development) condition.

Esti	mated Values fo	or Computation	of Groundwat	er Runoff*
Area of Till	GW	GW	Basin No.	Basin Name
and Bedrock	Runoff	Runoff	1	
In Basin				
(mi ²)	(Mgal/d)	(in/yr)		
0.84	0.33	8.25	7A	Croton River North
0.93	0.36	8.13	7B	Croton River North
1.10	0.42	8.02	7C	Croton River North
0.61	0.24	8.26	7D	Croton River North
1.35	0.54	8.40	10A	Green Briar Brook
1.72	0.71	8.67	15A	Plum Brook
1.22	0.50	8.61	15B	Plum Brook
1.38	0.56	8.52	15C	Plum Brook
0.35	0.13	7.80	17A	Titicus River
2.35	0.91	8.13	17B	Titicus River
2.02	0.79	8.21	17C	Titicus River
	Avg.	8.27	inches/year	

* - Selected Average Annual Recharge Values from Table 12 of reference "Computation of Bedrock-Aquifer Recharge in Northern Westchester County, New York, and Chemical Quality of Water from Selected Bedrock Wells." USGS Water Resources Investigations Report 92-4157 (selected pages attached as Appendix 9)

Basins selected in the above table are located approximately five to six miles due south of the subject site.

Using an average recharge (GW runoff) of 8.27 inches/year,

and adjusting to account for 56 inches of precipitation during previous 12 months at Carmel versus 47.40 inches of precipitation from historical mean at Carmel yields the following annual runoff:

(8.27 inches/yr.) * (56/47.4) = 9.77 inches/year

On a per month basis this yields: 9.77/12= 0.814 inches/month

The wet/snowy winter/spring weather that preceded the test period (See above data and Tables 4B and 5A) was assumed to have a 50% higher recharge value than the above average monthly value.

Therefore, adjust to 0.814 * 1.5 =	1.22	inches/month			
Annualized this yields = 1.22* 12 =	15	inches/year			
For the groundwater model, the recharge value will be:			0.00334589	ft/day]
Assumes approximate steady state is reached following this months preceeding the observed groundwater levels		-			

Table 8B - Basis for Post-development Groundwater Recharge - South Area The areas of the site in which runoff characteristics will be significantly changed as a result of the construction were considered in the model as follows: Subsurface Treatment System (SSTS) South Area: Effective septic recharge area for model equals 140,000 ft² multiplied by 2 (checkerboard reserve) = 280,000 ft² (As per Insite Engineering, based on analysis of soil percolation test results) Post-development recharge for a given design flow rate SOUTH AREA Sewage Flow Rate 9,000 11,000 13,000 gallons per day 1737.97 ft³ per day 1203.21 1470.59 0.004297 0.005252 0.006207 ft/day Unit Flow Rate Pre-Construction Base Flow 0.00334589 0.00334589 0.00334589 ft/day **Total Recharge** 0.0076 0.0086 0.0096 Post Development ft/day **Construction / Paved Areas** The following estimated reduced design recharge rates (inches/year) were used in paved / developed areas, where buildings, parking lots, access roads, or other developments are planned. Pre-development **Reduction** Post-development Infiltration Factor Infiltration (in/yr) (in/yr) (ft/day) 0.50 0.001712 15 7.5

	Т	able 9		
Summary	of	Depth	to	Bedrock

Hole No.	Ground Surface	Depth to	Bedrock	RQD	RQD	Notes
	Elevation	Top of Bedrock	Elevation	0-5' run	5'-10' run	
	(ft.)	(ft.)	(ft.)	(%)	(%)	
S-1	889.21	47	842.21			Not cored, roller bit refusal
S-2	896.51	43.5	853.01			
S-3	867.01	16	851.01	77	12	
S-4	858.88	18	840.88	45		
S-5	862.75	18	844.75	38	55	
S-6	861.25	15	846.25	82		
S-7	882.11	14	868.11	60	77	
S-8	893.47	30	863.47	72		
S-9	894.74	33	861.74			Not cored, roller bit refusal
S-9A	894.50	Not encountered				Exploration ended above top of bedrock
S-10	886.00	26.5	859.50			Bedrock core lost in borehole. No RQD value recorded.
S-11	886.99	49	837.99			Not cored, roller bit refusal
S-12	892.33	34.5	857.83	52		
S-13	888.16	41	847.16			Not cored, roller bit refusal
S-13A	888.00	Not encountered				Exploration ended above top of bedrock

Table 10 - Existing Conditions Model Calibration Results

Well No./ Target	Measured Groundwater Elevation (ft.)	Simulated Groundwater Elevation (ft.)	Difference in Elevation (ft.) (residual)
S-1 S-2 S-3 S-4 S-5 S-6 S-7 S-8 S-9A S-10 S-11 S-12 S-13	866 873 845 844 846 840 873 869 882 875 877 889 886	867 874 846 844 847 840 872 869 881 875 877 889 886	-1 -1 0 -1 0 1 0 1 0 0 0 0

Patterson Crossing Patterson and Kent, NY

Notes:

1) Targets S-9 and S-13A were not used in the calibration due to each target's proximity to nearby wells that were used in the model for calibration purposes.

2) All above data has been rounded to the nearest foot.

3) "Residual" refers to the difference in the modeled groundwater table from the field measured groundwater level at each well location. The sign convention is as follows:

- Negative residual is a result of the groundwater model being higher than the field value

- Positive residual occurs when the field value higher than the groundwater model value

Table 11

Increased Transmissivity Due to Increased Aquifer Saturated Thickness (for use in Post-Development Groundwater Model)

Patterson Crossing

Patterson and Kent, New York

South Area				
Well No.	Depth to Water (ft.)	Thickness of Cell in Model		
S-1	23.75	60		
S-2	23.91	60		
S-3	21.72	80		
S-4	15.35	70		
S-5	16.26	70		
S-6	23.00	70		
S-7	8.88	60		
S-8	24.37	60		
S-9	10.00	65		
S-10	13.52	60		
S-11	10.50	60		
S-12	20.32	60		
S-13	1.83	70		
	16.4			
		64.6		
		47.0		

13.4

С

1.3

٦

<

avg. depth to water

avg. total thickness

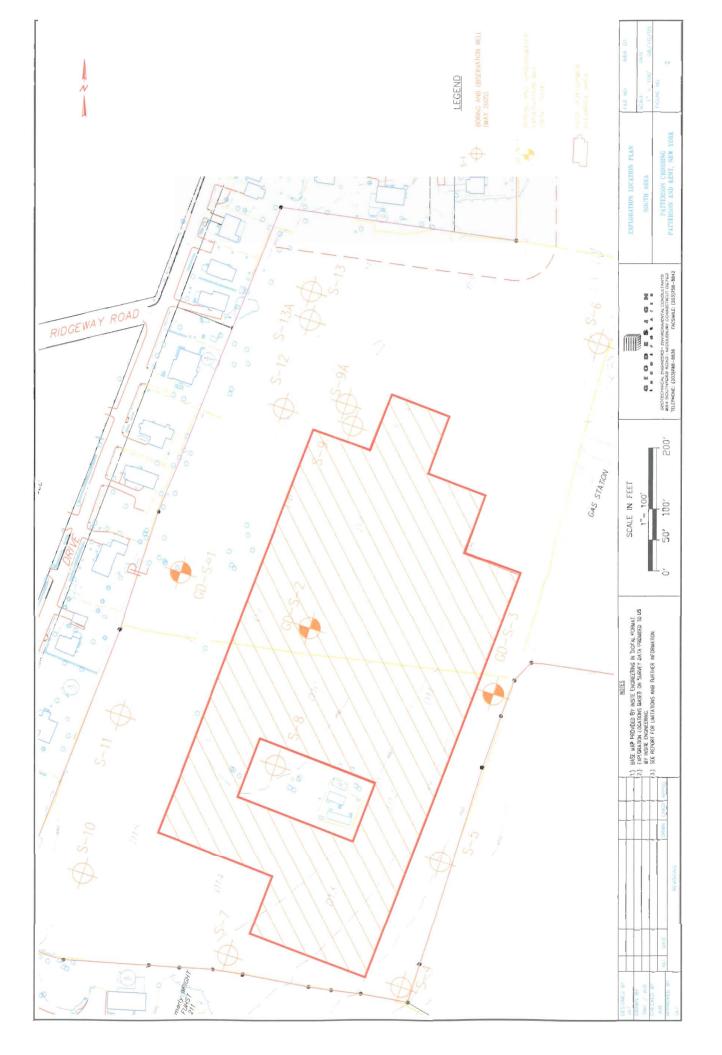
avg. saturated thickness (cell thickness minus avg. depth to water)

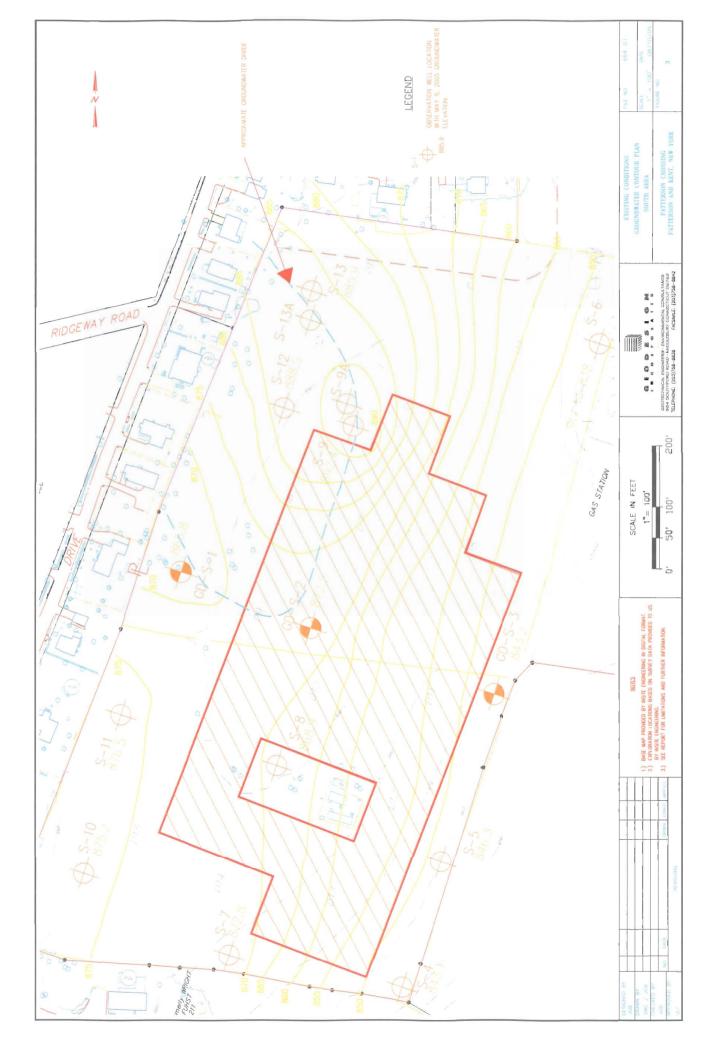
assumed avg. allowable water rise (depth to water minus assumed depth to bottom of discharge trench)

estimated increase in T at South Area

(increasing K by the same proportion without changing thickness)

Table 12


Post Model Increase in Hydraulic Conductivity to Account for Increased Saturated Thickness


K multiplier 1.3

Zone No.	K	K Pre		Post	Area used
Lono no.	Kh	Kz	Kh	Kz	
1	0.01	0.001	0.013	0.0013	South Area
2	0.0185	0.00185	0.02405	0.002405	South Area
3	0.01955	0.001955	0.025415	0.002542	South Area
4	0.025	0.0025	0.0325	0.00325	South Area
5	0.0245	0.00245	0.03185	0.003185	South Area
6	0.0285	0.00285	0.03705	0.003705	South Area
7	0.055	0.0055	0.0715	0.00715	South Area
8	0.0635	0.00635	0.08255	0.008255	South Area
9	0.16	0.016	0.208	0.0208	South Area
10	0.1275	0.01275	0.1275	0.01275	Entire Model outside of proposed SSTS
11	0.145	0.0145	0.1885	0.01885	South Area
12	0.155	0.0155	0.2015	0.02015	South Area
13	0.165	0.0165	0.2145	0.02145	South Area
14	0.175	0.0175	0.2275	0.02275	South Area
15	0.195	0.0195	0.2535	0.02535	South Area
16	0.25	0.025	0.325	0.0325	South Area
17	0.225	0.0225	0.2925	0.02925	South Area
18	0.2555	0.02555	0.33215	0.033215	South Area
19	0.3055	0.03055	0.39715	0.039715	South Area
20	0.3555	0.03555	0.46215	0.046215	South Area
21	0.55	0.055	0.715	0.0715	South Area
22	0.68	0.068	0.884	0.0884	South Area
23	0.7355	0.07355	0.95615	0.095615	South Area
43	0.01	0.001	0.01	0.001	South Area - no multiplier on Pre Zone 1
44	0.0245	0.00245	0.0245	0.00245	South Area - no multiplier on Pre Zone 5
45	0.0285	0.00285	0.0285	0.00285	South Area - no multiplier on Pre Zone 6
46	0.055	0.0055	0.055	0.0055	South Area - no multiplier on Pre Zone 7
47	0.0635	0.00635	0.0635	0.00635	South Area - no multiplier on Pre Zone 8
48	0.195	0.0195	0.195	0.0195	South Area - no multiplier on Pre Zone 15
49	0.2555	0.02555	0.2555	0.02555	South Area - no multiplier on Pre Zone 18
50	0.3055	0.03055	0.3055	0.03055	South Area - no multiplier on Pre Zone 19
51	0.3555	0.03555	0.3555	0.03555	South Area - no multiplier on Pre Zone 20
52	0.68	0.068	0.68	0.068	South Area - no multiplier on Pre Zone 22

Appendix 1 – Figures

Appendix 2 – Test Boring Logs

													E	BOR		_		Ĵ		Bor	ing No.:		1
			c	зI	EO	D		(5	G	N						t Nar				Pag	e No.:	1 of	2
			। Geo	N otechr		O R ngineer	P O	wironme	NTE ental Con				Hydrog	Patter geolo	ogic	al Ir	vest	igation		File	No.:	664-(01
			Te	elepho		984 Idlebur 3-758-	Southfor y, Conne 8836	cticut 0	6762 : 203-758	8-8842			Patters	son a	ind	Ken	t, Ne	w York	ζ.	Che	ecked By:	UL	=
Bor	ing Co	ompa	any.			al Boring	gs Inc					-		sing.		npler			Ground	water O	bservations		
	eman Desig	m Re	D.	-	Jeff Bu								··· <u> </u>	<u>S.A.</u> 5 in.	S 1.3	8 m.	1	Date	Depth (ft)	Elev (ft)	1	Notes	
Dat	e Star	ted		-		nber 4, 2	2004		Finished	Novem	iber 5,	2004	Hammer Wt .: N	NA	140) ibs	¥	11/8/04		865.2			
	Coordi und S			- vation	(feet).		8	E. Co 89.21	ordinate.					NA Diedrict		in.	¥ ¥	11/18/04 5/9/05		864.7 865.7			
Stat					. ,	Offset	ft						Hammer Type:		fety		¥						
	Ĥ					S	ample I	Informa	tion				Strata					San	nple [Descri	ption		
æ	Casing Blows/ft			tion	2	£		Diama / 6 .	nch Interv	al	Time	e (%)	Description	m	Symbol								
Depth (ft)	asing	Number	Type	Penetration (inches)	Recovery (inches)	Depth (ft)					Coring Time (min./ft)	Moisture Content (%)	Depth &		S								
<u> </u>	0	z	Ţ	4 E	23	<u> </u>	0-6	6 - 12	12 - 18	18 - 24	05	Elevation(feet) Topsoil/		<u></u>	Class	ification	System: Bu	rmister					
\vdash										-		1.5 Subsoil Glacial Till	1 997 7	1/ 1									
													1 007.1										
5																							
\vdash					<u> </u>																		
\vdash																							
10																- D-		E					
		1	SS	24	20	10.0	12	17	17	19								Gravel	e (o c	oarse	SAND a	na SILI	'
\vdash																							
15																							
											-												
\vdash					-																		
20							<u> </u>		-														
		2	SS	24	18	20.0	12	17	20	37						De trac	nse, b ce fine	rown fine Gravel	e to c	oarse	SAND a	nd SILT	,
					-	-																	
		\mid			-									¥									
25			-											Ŧ									
											·												
-					-																		
30	Thi	لسا ckn	iess	oftr	psoil	and s	ubsoil :	approxi	mated F	ov obse	rvina	auge	cuttings and d	drilling	u diffi	culty							
Remarks	Bo	reh	ole e	explo	ratio	n bega	an using	hollov	v stem a	augers.	Onc	e the	desired depth f erted. The casi	for the	é falli	ing ĥ	ead te	st was n	eache	ed, the	e augers	were	
Rem	adv	/an	ced	to th	e enc	l of ex	ploratio	on.	-		-			-	us ut	Juli	or the	amiy n		d			
Net					•								from 28 to 30 fe										
INOL	2)	wate	rleve	readin	igs have	ent appro been ma ecorded.	ximate bou ide at times	indary betw s and under	veen mater conditions	ual types, tr s stated, flu	ansition	ns may be ns of gro	egradual. andwater may occur d	lue to oth	her fac	tors tha	an those p	present at the	time m	easurem	ents were ma	de AC =	
	3)	Abbr WOR	eviatio /H = 1	ons: A Weight	= Auger of Rod	r: C = Co /Hammer	•			Piston Sam $\%$ And = 3		= Split	Spoon, SSL = 3 5 Inch	h ID Splı	t Spoo	n, ST =	= Shelby	Tube, V = V	ane,	Bori	ng No.:	S_1	

															RIN	_	LOG		Bo	ring No.:	
					Mic	984 s idlebury	Southfor , Conne	nvironme d Road ecticut 0	6762	nsultants			Hyd Patte	Patte	erson	o Cro al Ir	ossing nvestigatio it, New Yo	n rk	File	ge No.: e No.: ecked By:	<u>2 of 2</u> <u>664-01</u>
Bor	ng Co	mp		•		3-758-		Fax	203-75	8-8842				Casing	Sam	pler		Ground	lwater C	bservations	
	man	лпра	uiy	-	Rick P		3 110						Туре:	H.S.A.		S	Date	Dept	Elev.		Notes
	Desig Start		₽P.	-	Jeff Bu	uckley nber 4, 2	004	Data	Finished	Novem	ber 5	2004	I.D. Hammer Wt.	3.25 in. NA	1.38	8 in.) Ibs	T 11/8/04	(ft)	(ft) 865.2		
	oordi			-	NOVEN	1061 4, 2	004		ordinate:			2004	Hammer Fall:	NA			X 11/18/04		864.7		
		urfa	ce Ele	vation	. ,			89.21					Rig Type		ch D-47	,	¥ 5/9/05	23.5	865 7		
Stat	on:					Offset:	ft ample l	Informa	tion				Hammer Type		afety						
ţ,	Casing Blows/ft			tion	20		-	Blows / 6 i			Time (e :(%)	Stra Descriț		Symbol		5	ample I	Jescri	ption	
Depth (ft)	asing	Number	Type	Penetration (inches)	Recovery (inches)	Depth (ft)					Coring Time (min/ft)	Moisture Content (%)	Depth &		s	01	·				
<u> </u>	0	Z 3	L SS	24	≃ := 18	а 30.0	0-6 16	6 - 12 20	12 - 18 24	18 - 24 29	05	20	Elevation(feet)	Till	1		nse, brown			ne to me	dium Sand
								<u> </u>					(Contin	ued)							
]								
													-								
35													-								
					-																
	_												1								
]								
40																					
													-								
45																					
	_												-								
												-	47.0 Botto	m 842.2							
													of Explor at 47.0	ation							
50																					
]								
								-					-								
55								<u> </u>					1								
											•		1								
60																					
rks	Ata	a de	epth	of 4	al at a 8 feet	a depti t, a 2-i	n of 47 nch dia	teet. (I Imeter I	nterred PVC ob	top of l servatio	bedro on we	ock.) ell was	s installed wi	ith a 10	foot s	lotte	d screen an	d 40 fe	et of r	iser (inclu	uding a 2
Remarks	foo	t st	icku	p.)																	
Note	s: 1) s	Strati	ficatio	on lines	represe	nt approx	umate bou	indary betv	veen mater	al types, tr	ansition	ns may b	e gradual								
	2) 3)	Wate After Abbr	r leve corin eviatio	l readin g; NR = ons. A =	igs have = Not Ri = Auger	e been ma ecorded.	de at times re, D = Dri	s and under	condition	s stated, flu	ictuation	ns of gro	undwater may occ				an those present at = Shelby Tube; V				
								-20%, Son	ne = 20-35	%; And = 3	35-50%								Bori	ng No.:	S-1

Γ														BOF	RIN	G	LOO	3		Bo	ring No.:	S-2
									•					P	rojec	t Na	me				ge No.:	1 of 2
			l Geo	N N otechr	c nical E	O R ingineer	P O s and Er	R A	T E ntal Con	D			Hvd	Patter rogeolo	rsor	n Cr al Ir	ossin nvest	g igation	1	File	e No.:	664-01
					Mic	984 3	Southfor , Conne	d Road cticut 0					Patte	erson a	and	Ken	nt, Ne	w Yorl	K	Ch	ecked By	ULF
Bor	ng Co	mpa				al Boring		T'dX.	205-750	5-00-12				Casing	San	npler			Ground	water C	bservations	
	man				Rick P								·· _	H.S.A.		SS	4	Date	Depth (ft)	Elev (ft)		Notes
	Desig Start		ep.		Jeff Bi	uckley nber 3, 2	004	Date	Finished	Novem	ber 4,	2004	I.D Hammer Wt	<u>3.25</u> in. NA		8 in. 0 lbs	¥	11/8/04	<u> </u>	872.1		
	oordi							E Co	ordinate:				Hammer Fall:) in.	¥	11/18/04		871.8		
Gro		urfac	æ Ele	vation	(feet) [.]	Offset:	8	96.51					Rig Type: Hammer Type:	Diedric	h D-4 afety	7	¥ ¥	5/9/05	24.3	872.3		
Stat	.011.						ample I	nforma	tion				Strat					Sa	nple I	Jacori	ntion	
	ws/fi				т—			linoinia			2	2	Descrip		lod			34	lipie i	Jesen	puon	
(ţ)	Casing Blows/ft	ы		Penetration (inches)	very es)	Depth (ft)	E	Blows / 6 1	nch Interv	al	Coring Time (min./ft)	Moisture Content (%)			Symbol							
Depth (ft)	Casin	Number	Type	Penet (inch	Recovery (inches)	Dept	0-6	6 - 12	12 - 18	18 - 24	Corir (min.	Mois	Depth & Elevation(feet)			Class	sification	System B	urmistei	r		
											ľ		Topso		<u>*1</u>	-						
	_												2.0		<u>* ×</u>							
													Glacial	Till 894.5								
					<u> </u>																	
5					_																	
					-																	
			_																			
-	_				-																	
10					<u> </u>																	
H	_	1	SS	24	18	10.0	6	12	14	17										o coarse	SAND	
															an		, trace f	ine G	laver			
					ļ																	
15	_	2	SS	24	24	45.0	20	17	14	14					De	ense b	rown fin	e to c	oarse	SAND	and SILT,	
-		2	55	24	24	15.0	20	17	14	4							Gravel					
-	_		_																			
				_																		
20					1																	
20		3	SS	24	20	20.0	14	18	17	20								rown fin Gravel		coarse	SAND a	and SILT,
															(I)	. a						
					-																	
														Ŧ								
25		4	SS	24	12	25.0	16	20	23	25	-			Ŧ		De	ense, h	rown fin	e to c	oarse	SAND.	some Silt,
		+	33	24	12	25.0	10	20	23	20								to coars			,	,
-			-	-	-						-	_								-		
200							-															
30																						
	Th	ickr	ness	oft	opsoil	and s	ubsoil a	approxi	mated I	by obse	rving	auge	r cuttings ar	nd drilling	g difl	ficulty	y.					
Remarks	Bo rer	reh nov	ole (red f	explo rom	bratio the b	n bega ore ho	in using le. and	g hollov 3-inch	v stem a flush io	augers.	Onc ng wa	æ the as ins	desired dep erted. The c	th for the	e fall /as u	ling h Ised	head te	est was falling h	reach nead t	ed, th est, a	e augers ind was t	were hen
Rema							ploratio							3								
																	_					_
3	2)	Wate After	er leve r corin	l readi g, NR	ngs have = Not R	e been ma lecorded.	ide at time	s and unde	r condition		ictuatio	ns of gro	undwater may occ							neasuren	nents were m	ade. AC =
SNINOG		WOF	VH = '	Weigh	t of Rod	Hammer				Piston San %; And = 3		-	Spoon; SSL = 3.5	Inch ID Spl	iit Spo	on; ST	= Shelby	Tube, V = '	Vane;	Bori	ing No.:	S-2

														BOI		I G rt Nat		G		Bo	ring No.:	S-2
					Mie	984	rs and Er Southfor y, Conne	nvironme d Road ecticut 0		nsultants			Hyd Patte	Patte	rsor	n Cr al II	ossii nves	ng tigatior ew Yor	n k	File	ge No.: e No.: ecked By	<u>2 of 2</u> <u>664-01</u>
Воп	ng Co	mpa		•		ral Borin		1 45	205-75	0-00+2				Casing:	San	npler			Ground	lwater (Observations	
	man			-	Rick F								Туре _	H.S.A.		SS		Date		Elev		Notes
	Desig Start		эр .	-		uckley nber 3, 2	2004	Date	Finished	Novem	ber 4	2004	I.D Hammer Wt	3.25 in. NA		88 in 0 lbs	¥	11/8/04	(ft)	(ft) 872.1		
	oord			-					ordinate				Hammer Fall:	NA) in.	¥	11/18/04		871.8		
		urfac	ce Ele	vation	(feet)			96.51					Rig Type	Diedro		7	¥ ¥	5/9/05	24.3	872.3		_
Stati	on:					Offset:		(fa	tion			_	Hammer Type		afety		+			1		
	lows/ft			E			Sample I				me	(%	Stra Descriț		Symbol			Sa	mple I	Descri	iption	
Depth (ft)	Casing Blows/ft	Number	Type	Penetration (inches)	Recovery (inches)	Depth (ft)		Blows / 6 1			Coring Time (mm/ft)	Moisture Content (%)	Depth &		Sy	0						
H	-	~	Т	<u> </u>	≃ ⊙		0-6	6 - 12	12 - 18	18 - 24	0.5	20	Elevation(feet Glacia	Till	22	Class	sification	n System. B	urmiste	r 		
						+							(Contin	ued)								
]									
35							<u> </u>															
							<u> </u>															
40																						
		5	SS	12	9	40.0	22	100								Ve	ry der	nse, gray	fine	to me	dium SAI	ND and
																<u>_ 511</u>	LI, tra	ace fine (srave			
													43.5									
		C-1	-c-	-60-	-44-	43.5-					4		Bedro	ck 853.0	K	Po	or Qu	ality, Mo	derat	ely Ha	ard, Mode	erately
45											-3					VVe	eather	red, white	e/gray	, GNI	ISS	
	_					<u> </u>					-5				X							
						-					-6											
							-		-		-6	-	48.5 Botto	m 848.0								
50													of Explor at 48.5	ation								
\vdash																						
						<u> </u>																
55																						
		+																				
60																						
mar	Rol A 2	ler -inc	bitr chd	efusa iame	al at a ter P	a dept VC ob	h of 43.	5 feet. on well	Bedroo was ins	ck corec	fron	n 43.5	from 33 to 3 to 48.5 feet f 43 feet. T	t.	rvati	on w	ell co	nsisted o	f 10 f	eet of	slotted s	creen, with
Note	2) \	After	corini	g, NR =	s have Not R	e been ma .ecorded.		and under	conditions	s stated, thu	ctuation	ns of gro	undwater may occ							easurem	ients were ma	de. AC =
	3) A V	Abbre VOR	eviatio /H = V	ons A = Weight	= Auger of Rod	r; C = Co /Hammer	re; D = Dri				-	= Split	Spoon; SSL = 3.5	Inch ID Spl	it Spoo	on, ST =	= Shelby	Tube, V = V	/ane;	Bori	ng No.:	S-2

Γ														BOI	RIN	IG I	LOC	Ĵ		Bo	ring No.:	5	-3
							1111)						Р	rojec	t Nar	ne				ge No.:		
				G E	o و	D O R	P O	S I R /	с Сте	N D				Patte	rsor		ossin	a			-		of 1
			Ge	otechn	ical E		rs and En Southford		ental Con	<i>isultants</i>				rogeol	ogic	al Ir	nvest	igation		File	e No.:	664	4-01
			T	elepho	Mic ne: 20	dlebur	y, Conne	cticut 0	6762 : 203-75	8-8842			Patte	erson a	and	Ken	it, Ne	w York	ξ.	Che	ecked By	:U	LF
Bo	ring C	omp	any	-	Gener	al Boring	gs Inc						Casing	San	npler			Ground	water C	bservations			
	reman coDesi		en :	-	Rick P							Type	H.S.A. 3.25 m		85 8 in.	-	Date	Depth (ft)	Elev. (ft)		Notes		
	te Sta	0	-ер	-		nber 2, 2	2004	Date	Finished:	Nover	ber 3,	Hammer Wt	NA		0 lbs	¥	11/8/04	23.3	843.7				
1	Coord		-	- vation	(feet)			E. Co 67.01	ordinate:				Hammer Fall Rig Type:	NA Diedric) <u>in.</u>	¥ ¥	11/18/04 5/9/05		844.0			
1	ition:	Sulla		vation	(,	Offset:		57.01					Hammer Type		afety	/	¥	5/9/05	23.7	843.3			
	_					S	ample I	nforma	tion			Strat					San	nple I	Descri	ption			
	Casing Blows/ft	F		ы			1				ime	Descrip	otion	Symbol									
Depth (ft)	sing B	Number	8	Penetration (inches)	Recovery (inches)	Depth (ft)	В	Blows / 6 n T	nch Interv	al 	Coring Time (min/ft)	Depth &		sy									
De	Ca	+	Type	t —	 		0-6	6 - 12	12 - 18		<u>°</u> °C	Elevation(feet)		34			System. Bu						
	-	1	SS	24	18	0.0	1	1	2	2		Subso		<u>× </u>						arse SA race (-) F		1	
\vdash	+	+	\vdash					<u> </u>					2.0 Glacial	Till 865.0									
\vdash	+	+	\vdash																				
	5																						
		2	ss	24	20	5.0	9	15	18	22								rown fine Gravel	e to c	oarse	SAND a	and SIL	.T,
		\vdash					<u> </u>																
\vdash	+	+-	-																				
1	+		\vdash																				
Ľ	1	3	ss	24	18	10.0	7	10	9	7										o coarse	SAND),	
															sor	me Sill	t, trace fi	ne G	ravel				
								L															
	-	\vdash	-																				
15	5	4	ss	5	5	15.0	5	50/0"				46.0			- Vei	ry den	se, brow	n fine	e to co	oarse SA	ND, so	me _	
F		C-1	с	60	57	16.0	[REC	C= 95%;	RQD= 7	77%]	3	16.0 Bedro	ck 851.0		- <u>\Silt</u>	, trace	e (-) fine	Grav	el, (m	oist) ard, Slig			
											4							ed, white				nuy	
											4				\bigotimes								
20) 										4				\boxtimes								
	-	C-2	c c	60	16	21.0	[REC	C= 27%;	RQD= 1	12%]	6 6					Ve		r Quality	. Mo	derate	ely Hard,	Slight	v
			F		-13	21.0					7			_	\bigotimes	We	athere	ed, white	/gray	, GNE	EISS		·
	\square										3			Ŧ	ø								
2	5										3				\otimes								
											5		26.0										
											· .		Bottor of Explor	ation									
	-	\vdash	-										at 26.0	л									
		\square																					
		ickr	ness	ofto	I	and e	ubsoil		mated I		rving	auge	r cuttings an	d drilling	u diffi	iculty	Soli	t spoon r	efue	al at 1	5'5" bo	llow etc	
arks	au	ger	refu	isal a	t 16 f	t. Drill	water le	ost in b	orehole	e (not re	circu	lating) during rock ecovered in	(corina	at a	depth	n 20 fe	et (4 fee	t into	bedr	ock). Sa	ind sea	am l
Remarks	us	ing	holl	ow st	em a	ugers;	once b	edrock	was re	ached,	3" di	amete	r casing was	s used to	o sea	al off	the ro	ck socke	t to p	rever	nt sand s	eam	gan
	2-i	llap nch	ı dia	mete	r PVC) obse	rvation	well in	stalled	at 26 fe	eet w	ith 10	feet of slotte	ed scree	n an	d 20	feet of	f <u>riser (i</u> n	cludi	ng a 2	2.7 foot s	tickup.)
	tes: () 2)	Wate	er leve	i readin	gs have	been ma	ximate bounde at times	ndary betw and under	veen mater	ial types, tr s stated, flu	ansition	ns may b ns of gro	e gradual undwater may occ	ur due to ot	her fac	tors that	in those p	present at the	time m	easurem	ients were m	ade AC =	
		Abbr WOF	reviati R/H =	ons A = Weight	= Auger of Rod/	Hammer						s = Split	Spoon; SSL = 3.5	Inch ID Spl	ıt Spoo	n, ST =	= Shelby	Tube, V = V	ane,				
2							Little = 10-	-20%; Som	ne = 20-35	%, And = 3	5-50%									Bori	ng No.:	S-3	

Γ														BOF	RIN	G	LO	G		В	oring No	.:	S-4
						_	1111		-					P	rojec	t Na	me				age No.:		1 of 1
			Geo	N	ical E	984 \$	P O s and En Southford y, Conne	<i>wironme</i> d Road					Hydi Patte	Patter ogeolo erson a	ogic	al Ir	nves	tigatio	on ork	Fi	le No.: hecked E	6	64-01
_				lepho	one: 20	3-758-	8836		203-758	8-8842				Casing	Sam	pler	1		Grout	ndwater	Observatio	ns	
	ing Co eman:	-	iny [.]	-		al Boring elpriore	IS INC						Туре	H.S.A.		SS		Date	Dep	th Elev	<i>i</i> .	Notes	
ŧ	Desig		р. [.]	-	Jeff Bu									3.25 in.		8 in.	+		(ft				
	e Start Coordi			-	April 2	5, 2005			Finished: ordinate	April 2	5, 2005	<u> </u>	Hammer Wt Hammer Fall	NA) Ibs) In.	T T	5/9/05	15.	8 843.	1		
Gro	ound S	urfac	e Ele	vation	(feet):			58.98					Rig Type:)	T				-		_
Stat	tion:				_	Offset:							Hammer Type		afety_		¥				_		
	s/Ĥ					S	ample I	nforma	tion				Strat Descrip					S	Sample	Desc	ription		
ŧ	Casing Blows/ft	5		()	À.	æ	Е	Blows / 6 u	nch Interv	al	Coring Time (min./ft)	Moisture Content (%)			Symbol								
Depth (ft)	asing	Number	Type	Penetration (inches)	Recovery (inches)	Depth (ft)	0-6	6 - 12	12 - 18	18 - 24	oring min/f	Moistu	Depth & Elevation(feet)			Class		n System	D				
F	ا	1	SS	24	19	0.0	2	2	3	4	Ŭ	2.0	1.0		<u>s 1</u> ,	Lo	ose, o	dark br	own fir		medium	SAND	and
⊢													Glacial	Till 857.9	1/1	SIL	LT, tra	ace (-)	Roots				
					L																		
5	<u> </u>															Me	edium	dense	brow	n fine	to coars	e SAI	
⊢		2	SS	24	20	5.0	6	11	18	25								, little fi			to coart		10,
⊢					\vdash											_			_				
\vdash																							
10																							
		3	SS	24	15	10.0	7	11	19	13								brown arse G		coars	se SAND) and §	SILT,
	-	\vdash									-												
15		4	SS	5	1	15.0	100/5"							Ŧ					nite co	arse(GRAVEI	/COB	BLE /
																\fra	igmer	105					/
										150(1			18.0	-1. 040.0				. 194					
		C-1	С	60	39	18.0	[REG	C= 65%;		45%] 	4		Bedro	ck 840.9		Po	or Qu	uality, g	ray, G	NEIS	5		
20	·	\vdash									4												
		\vdash	_								4												
	\square										4		23.0		\bowtie								
													Botto of Explor										
25													at 23.0										
5																							
	-												1										
30			-										1										
Remarks	Au Ob 12 be	to 2 low	vatio 22 fe gro	on w eet, v und :	ell ins vith so surfac	stalled olid ris æ.)	to a de er abov	pth of 2 ve. Filte	22 feet er sand	placed	Irade I arou	. (2-ir Ind sc	nch diameter reen, and be	PVC pi entonite	pe, v seal	vith a plac	a 10 f ced bo	oot lor oth abo	ng 0.01 ve filte	inch r san	slotted and 12	screen ? to 18	from inches
	2) 3)	Wate After Abbr WOF	r leve corin reviation VH =	f readi g; NR ons: A Weigh	ngs have = Not R = Augen t of Rod	e been ma lecorded. r; C = Co /Hammer	ade at time ore; D = Dr	s and unde tven, G = (r condition Grab, PS =		nple, S	ns of gro S = Split	e gradual. oundwater may occ Spoon; SSL = 3.5								ements were 		•C =

Γ																	LOG	ſ		Bo	ring No.:		à-5
				G	= 0				•					F	Projec	t Na	me			Pag	ge No.:	1	of 1
			I	N	с	OR	PO	R A	Т								rossing				e No.:	66	4-01
			Geo	otechr		984 9	rs and En Southfor	d Road		nsultants			Hyd Batte	rogeol erson a	ogic	al Ir	nvesti	gation	,	1			
			Te	elepho		ddlebury)3-758-1	y, Conne 8836		6762 : 203-75	8-8842			Falle	5011	anu	Rei	II, INEN		•	Che	ecked By	: <u> </u>	
Bor	ing Co	mpa	iny	-	Gener	al Boring	gs Inc							Casing:	San	npler:			Ground	water C	bservations		
	man Desig	n Pe	m	-	Erik D								Type	H.S.A. 3.25 in.		35 38 in.		Date	Depth (ft)	Elev (ft)		Notes	
	e Start		ε μ .	-		25, 2005		Date	Finished:	April 2	6, 2005	5	Hammer Wt.:	NA		0 lbs	¥ :	5/9/05	16.6	846.2			
	Coordi			-					ordinate				Hammer Fall:) in.	¥						
Gro Stat		urfac	e Ele	vation	(feet):	Offset:		62.85					Rig Type Hammer Type:		ch D-50 afety	0	¥ ¥		┼─				
							Sample I	Informa	tion				Strat					Sar	nple [)eccri	ntion		
	ws/ft						1				2	-	Descrip		ষ			30	iipie i	Jesen	puon		
(łj	Casing Blows/ft	Ser .		Penetration (inches)	s) (s	(ij)	в	Blows / 6 is	nch Interv	/al	Coring Time (min/ft)	Moisture Content (%)			Symbol								
Depth (ft)	Casın	Number	Type	Penet (inche	Recovery (inches)	Depth (ft)	0-6	6 - 12	12 - 18	18 - 24	Corin (min.	Moist	Depth & Elevation(feet)	,		Class	sification S	System: Bi	urmister				
\vdash		1	SS	24	20	0.0	1	1	2	3			1.0 Topso	oil	<u>34</u>	Ve	ery loose	e, brow	n fine		edium SA	AND, s	some
													Glacial	Till 861.8		Sil	t, trace	(-) Roo	tS				
5					<u> </u>	<u> </u>										Ma				6			
⊢		2	SS	24	17	5.0	3	4	7	16							me Silt	ense, b	rown	nne t	o mediur	n Sar	ND,
┣							+																
⊢							<u> </u>																
10																							
ا		3	SS	24	18	10.0	11	10	8	13											and fine	to coa	arse
																SA	AND, litt	ie fine t	o coa	rse G	iravel		
⊢																							
15					<u> </u>												ny dana	e brow		Tan	d fine to	coarec	
⊢		4	SS	24	12	15.0	23	37	18	17				¥		SA	ND, litt	le fine t	o coa	rse G	Favel	500130	
⊢											$\left \right $		18.0	-									
		C-1	С	60	50	18.0	[REC	C= 83%;	RQD=:	38%]	5		Bedro	ck 844.8		Po	or Qua	lity, gra	y, GN	EISS			
20											6												
											5				\bowtie								
											5												
								0- 800/	BOD-	550/1	5						- C	h	0.115	-100			
		C-2	С	60	50	23.0		C= 83%;		55%]	4					Fa	ir Quali	ty, gray	, GNE	ISS			
25						<u> </u>					5				\mathbb{M}								
\vdash											6 5												
-					-						5 5		20.0										
\vdash	_										-		28.0 Botto		×74								
30													of Explor at 28.0										
	Au	ger	refu	isal a	at a d	epth o	of 18 fee	et. Bed	rock co	red 18	to 28	feet.		•••									
Remarks	Ob	ser	vatio	on w	ell ins	stalled	to a de	pth of 2	28 feet	below g	rade.	. (2-in	ich diameter reen, and be	PVC pi	ipe, v seal	vith a	a 10 foo	t long (0.01 i filter	nch s	lotted sc	reen f	rom
Rem					surfac		5. 0004		ci sunu	p.0000	2,00				Juan	2.00			mer	Junu		5 10 1	
Not	- 2) 1	wate	r leve	readin	igs nave	e been ma		indary betw s and under	veen mater r condition	rial types, tr is stated, flu	ansition	ns may b ns of gro	e gradual undwater may occ	cur due to o	ther fac	tors that	an those pr	esent at the	e time m	easurem	ients were ma	ade AC	-
	3) /	Abbr	eviatio	ons A	= Auger	ecorded r, C = Co /Hammer	ore; D = Dri	iven, G = C	Grab; PS =	Piston San	nple; SS	S = Split	Spoon, SSL = 3.5	Inch ID Sp	lit Spoo	on, ST :	= Shelby T	ube; V = V	ane;			_	
	4)	торо	ortions	Used.	Trace =	= 1-10%;	Little = 10	-20%, Son	ne = 20-35	%; And = 3	35-50%									Bori	ng No.:	S-5	i

Γ																	LOG		В	oring No.:	S-6
			c	ЭE	. 0	D		s i	G	N				P	тојес	t Na	me		P	age No.:	<u>1 of 1</u>
			l Geo	N n ntechn	-	O R ngineer	P O rs and Er	•• •	T E ntal Con				Hvd				rossing nvestigat	ion	F	ile No.:	664-01
					Mid	984	Southfor y, Conne	d Road cticut 0					Patte	erson a	and	Ker	nt, New Y	ork	С	hecked By	:ULF
Bon	ng Co	mpa				al Boring								Casing:	San	npler		Grou	indwater	r Observations	
	man Desera	- D -		-	Erik De								Type	H.S.A. 3.25 in.		85 18 in.	Date		pth Ele t) (ft		Notes
	Desig e Start		p .:	_		9, 2005		Date	Finished:	May 2,	2 <u>0</u> 05		Hammer Wt.	NA		0 lbs	¥ 5/9/0	5		Dry to 17	7 ft.
N. C	Coordi	nate		_				E. Co	ordinate				Hammer Fall	NA	-) in.	¥				
Gro Stat		urfac	e Ele	vation	•	Offset		61.25					Rig Type: Hammer Type:		<u>≭h D-50</u> afety	0	¥ ¥				
Stat							ample I	nforma	tion			·	Strat				1	Samul	- Decc	rintion	
	vs/ft				-			morna			Ð		Descrip		10			Sampi	e Dest	cription	
(ŧ)	Casing Blows/ft	er		Penetration (inches)	ery s)	(ŧ)	E	Blows / 6 1	nch Interv	al	Coring Time (min /ft)	Moisture Content (%)			Symbol						
Depth (ft)	asing	Number	Type	enetr	Recovery (inches)	Depth (ft)	0-6	6 - 12	12 - 18	18 - 24	Coring min./	Moist	Depth & Elevation(feet)			Class	sification Syste		ster		
<u> </u>	Ť	1	SS	24	23	0.0	1	1	3	4			1.0 Topso		<u>×4</u>	Lo	ose, dark b	orown fi		medium S	AND and
\vdash		-											Glacial	Till 860.3	1/2	SI	LT, trace R	oots			
5																					
		2	SS	24	19	5.0	11	13	18	23							ense, browr le fine to co			se SAND a	and SILT,
																					_
										_	L										
10																\Ve	ery dense, r		verv		
	_	3	SS	1	0	10.0	100/1"											10 1000			_
-					-						<u> </u>										
		\square				<u> </u>															
15													15.0								
—		C-1	с	60	55	15.0	[REG	C= 92%;	RQD=	32%]	4		Bedro	ck 846.3	\mathbb{N}	Go	ood quality,	gray, (GNEIS	s	
											5										
											5				\bigotimes						
											5										
20									ļ		5		20.0	m 841.3							
5 													of Explor	ation	1						
2	-												at 20.0								
					-																
		\vdash				-															
25	-																				
					-			-													
											1										
30																					
							of 15 fee														
Remarks	Ob to	ser 17 1	vati feet.	on we with	ell ins solid	talled riser	to a de above.	pth of f Filter s	7 feet	below g aced are	rade. ound	. (2-ir scree	ch diameter n, and bento	r PVC pi onite sea	pe, v al pla	with a ced	a 10 foot lo both above	ong 0.0 e filter s	1 inch and a	and 12 to 1	reen from 8 inches
Ren					surfac																
Not	2)	Wate	r leve	l readur	igs have	e been ma		undary betw s and unde	veen mater condition	rial types, to s stated, flu	ransitio	ns may b ns of gro	e gradual undwater may occ	cur due to o	ther fac	ctors th	han those present	t at the turn	e measur	rements were m	ade. AC =
	3)	Abbr WOF	eviati VH =	ons A Weight	= Auger	/Hammer	ore; D = Dr r						Spoon, SSL = 3.5	Inch ID Sp	lit Spoc	on, ST	= Shelby Tube,	V = Vane		ala a NT	6.6
5							Little = 10)-20%; Sor	ne = 20-35	%, And = :	35-50%								Bo	oring No.:	S-6

Ы

														BOI		_		G		Bo	ring No.:		3-7
				~ .		_	1111		-					P	rojec	t Nar	me			Pag	ge No.:	1	of 1
			1	G I	ູດ	O R	PO	R A	ТЕ					Patte	rsor	n Cr	ossir	ng			e No.:		64-01
			Geo	otechr		984	rs and Er Southfor	d Road		isultants			Hydi	rogeol	ogic	al Ir	ivesi	tigation	ו				
			Те	elepho		ddlebur)3-758-	y, Conne 8836		6762 : 203-75	8-8842			Palle	erson a	and	Ken	it, ne	w Yor	К	Che	ecked By	:: L	JLF
	ing Co	mpa	iny	-		al Boring	gs inc						ł	Casing.		npler:			· T · ·	1	bservations		
	eman [.] Desig	n Re	D.	-	Rick P								· · · -	H.S.A. 3.25 in.		<u>55</u> 38 in.		Date	Depth (ft)	Elev (ft)		Notes	
	e Start			-		5, 2005		Date	Finished.	April 2	6, 2005	5	Hammer Wt.	NA		0 Ibş	¥	5/9/05	9.4	872.7			
	Coordi und S			- vation	(feet):		Bi	E. Co 82.11	ordinate				Hammer Fall		_	<u>) in.</u> 7	¥ ¥		+				
Stat				vation	(1001).	Offset		<u>.</u>					Hammer Type:		afety	·	¥						
	<i></i>					S	Sample I	nforma	tion				Strat					Sa	mple I	Descri	ption		
	Casing Blows/ft			E							me	(%	Descrip	tion	Symbol								
Depth (ft)	mg B	Number	ę	Penetration (inches)	Recovery (inches)	Depth (ft)	E	Blows / 6 i	nch Interv I	al	Coring Time (min./ft)	Moisture Content (%)	5.4.6		Syı								
Dep	Cas	Νm	Type	Pen	(inc	Dep	0-6	6 - 12	12 - 18	18 - 24	Cor (min	Cor	Depth & Elevation(feet)					System: E					
L		1	SS	24	6	0.0	1	2	2	2			Topso	DI	<u>, 1</u>		ose, b ce Ro		e to m	ediur	n SAND	and S	ilLT,
<u> </u>													2.0 Glacial	Till 880.1									
			_		-																		
5																							
		2	SS	24	18	5.0	9	10	10	13						Me	dium	dense,	brown	fine t	o mediu	m SAN	٧D,
			-													sor	me Sil	t, trace	fine G	ravel			
	_																						
<u> </u>					ļ									¥									
10		3	SS	5	6	10.0	400/5							+		_ Ve	rv der	se hrou	wn fine	to m	edium S		
┝	<u> </u>	3	55	5	5	10.0	100/5"								1	\sor	ne Sil	t, trace	fine G	ravel	(fracture		Γ
		-			-											COL	ble/b	oulder fi	ragme	nts in	up)		
												-	14.0										
15		C-1	С	60	50	14.0	[REC	C= 83%; I	RQD= 0	50%]	14		Bedro	ck 868.1	\mathbb{N}	Gra	ay/whi	te GNE	ISS w	th Qu	iartz		
						ļ					15												
											13				\bigotimes								
\vdash		-									14 14				Ŵ								
20		C-2	с	60	55	19.0	[REC	C= 92%;	RQD= 7	[77%]	12				K	Gra	ay/whi	te GNE	ISS w	th Qu	iartz		
20											13				\otimes								
											15				\bigotimes								
											15				\otimes								
			_		ļ						18		24.0 Bottor	m 0504									
25		_											Bottor of Explore	ation									
		_											at 24.0	'n									
\vdash		-																					
							<u> </u>																
30																							
	Au	ger	refu	isal a	ata d	epth o	f 14 fee	t. Bed	rock co	red 14	to 24	feet.											
Remarks	Ob 13	ser to 2	vatio 23 fe	on we eet, v	ell ins vith so	stalled	to a de er abov	pth of 2 /e. Filte	13 feet l er sand	below g placed	rade. arou	(2-in Ind sci	ch diameter reen, and be	PVC pi	pe, v seal	vith a place	i 10 fo ed bot	ot long	0.01 i e filter	nch s sand	lotted sc and 12 t	reen fi o 18 ir	rom hches
Rer					surfac																		
Note	S: 1) 4		fication	n he-			ximate bou	ndam b-r	1000 m-1	inl trunce			andual										
	2) 1	vate: After	corin	g; NR =	igs have = Not R	e been ma ecorded.	ide at times	and under	condition	s stated, flu	ictuatio	ns of gro	undwater may occ							easurem	ients were m	ade AC	-
	1	VOR	/H = \	Weight	of Rod	Hammer	re; D = Dri Little = 10				•		Spoon; SSL = 3.5	inch ID Spl	it Spoc	m, ST =	= Shelby	Tube; V =	Vane,	Bori	ng No.:	S-7	,

Γ														-			LOC	י ז		Bor	ing No.:		8
				GE	= C	D		\$	G	N					Projec	t Nar	me			Pag	e No.:	1_of	f 1
				́н	ີເັ	OR	P O		T	D D D			l live				ossin			File	No.:		-01
					Mic	984 : dlebur	Southfor y, Conne	d Road cticut 0	6762				Patte	rogeo erson	and	Ken	it, Ne	gation w York	(Che	ecked By:	UL	.F
	onna	Com		•		3-758-		Fax	203-75	8-8842				Casing.	San	npler:			Ground	water O	bservations		
	orema		July	-		elpriore							Туре: _	H.S.A.		ss		Date		Elev		Notes	
		sign F tarted:	lep.∶	-	Jeff Bu	ckley 6, 2005		Dota	Finished	April 2	7 2004		I.D.: Hammer Wt	3.25 in. NA		8 in 0 lbs	¥	5/9/05	(ft)	(ft) 868.8			
		rdinat	e	-		0, 2000			ordinate		7,200	,	Hammer Fall) in.	¥	5/9/05	24.1	000.0			
	round		ace Ele	evation	` '	Offset:		93.57				Rig Type: Hammer Type		<u>ich D-50</u> Safety	0	¥ ¥							
3			_		_		ample	nforma	tion				Stra		Salety		<u> </u>	Sor	nnla [Descri	ntion		
	4/		-	_	1						2	2	Descrip		Pol			ىەد	upie i	Jesen	ption		
Denth (ft)	(m) mdaa	ber ber		Penetration (inches)	very es)	Depth (ft)	E	Blows / 6 i	nch Interv	al	Coring Time (min./ft)	Moisture Content (%)			Symbol								
Dev.			Type	Pene (inch	Recovery (inches)	Dept	0-6	6 - 12	12 - 18	18 - 24	Cori (min	Cont	Depth & Elevation(feet)		Class	ification	System: Bi	ømister				
		1	ss	24	14	0.0	1	1	1	3	[1.0 Tops Glacial	oil Till 892	5000		ry loos ce (-) F		browr	n SILT	and fine	SAND	,
	+												Giacial	111 032			() !				_ <u>.</u> .		
F	T	-		[
\vdash	5	2	SS	24	19	5.0	4	7	7	13	<u> </u>									CLAYEY		ind	
	1															fine	e to co	arse SA	ND, t	race f	ine Grav	el	
\vdash	╋	╉									-												
	0															Va	n don		brow	- <u></u>	Tandfin	<u></u>	
\vdash	+	3	SS	24	17	10.0	22	30	35	29											T and fin coarse G		
			ļ																•				
	5	-	+																				
		4	ss	24	19	15.0	44	43	31	35					Ver	ry dens	se, olive , trace fi	brow	n fine	to medi	JM SAN	٩D	
\vdash	+																, 11000 11						
		_	1.																				
ľ	20	5	ss	24	18	20.0	14	20	22	27					De	nse, gi	ray/brow	n fine	e to m	edium S	AND,		
	T															sor	me Silt	, little fir	e to c	coarse	e Gravel		
\mathbf{F}	+	+	-																				
8/26/05	25	_											25.0 Bould	T				augh D	-				
GDT 8	+		1 C	30	15	25.0					4	ļ	Bould	ler 868				ough Bo	Juidel				
		1-									2/0.5'		27.5 Glacial	Till 866	.0								
GEODESIGN STANDARD	80	+	-		-								30.0										
		c-:	2 C	60	51	30.0	[RE	C= 85%;	RQD=	72%]	4		Bedro	ck 863	5	Gra	ay GNI	EISS					
DESIC	+	+			-						5 5				Ø								
CEO	1										5				\bowtie								
	15	+	-	-	 						4		35.0 Botto	m 858	.5								
Logs	1		L	 	<u>†</u>								of Exploi at 35.0										
UNG NG	d)cca	sion	al cot	bles	inferre	ed throu	ughout	the ala	cial till s	trata	base	d on observ	ed diffi	cultv i	n auc	ger adv	ancem	ent.				
BORING LOG MC 12/19/03 BORING LOGS GPJ		uge	r refi	usal a	atad	epth o	f 30 fee	et. Bed	rock co	red 30	to 35	feet.	inch diame		-		-			linch	slotted s	creen f	rom
2/19/0 B.em		4.5	to 34	.5 fe	et, wi	th solid d surfa	d riser a	above.	Filter s	and pla	iced a	around	d screen, an	d bent	onite s	seal p	blaced	both ab	ove fi	Iter sa	and and	2 to 18	;
MC 1:	F	allin	g he	ad te	st pe	rforme	d in tes						27 feet bel	ow gra	de.								
100	Juca.	2) Wai	ter leve	i readin	igs have	ent appro: been ma ecorded	ximate bou de at times	indary betw and under	veen mater condition	nal types, tr is stated, flu	ansitio	ns may b ns of gro	e gradual undwater may oc	cur due to	other fac	tors that	an those p	resent at the	time m	easurem	ents were ma	de AC =	
DRING		3) Abł WO	reviati R/H =	ons A Weight	= Auger of Rod	r; C = Co /Hammer				Piston San %; And = 3	•		Spoon, SSL = 3.5	Inch ID S	plit Spoc	on, ST =	= Sheiby 1	Tube; V = V	ane;	Bori	ng No.:	S-8	
ыĽ		9.00	portion	36 4	i lace -	1-1070,		2070, 30F		70, And - 3										2010	-B - 10		

																	LOG		Bor	ring No.:	S-9	
				GE	: C			s I	G	N				_	rojec				Pag	e No.:	<u>1 of</u>	2
			I Geo	N Ditechn		O R ingineer	P O rs and Er	R A	хте ental Cor	D D D			Hyd				ossing nvestigatior	1	File	No.:	664-	01
			Т	elepho		984 dlebur 3-758-		d Road cticut 0 Fax		8-8842			Patte	erson a	and	Ken	nt, New Yor	<	Che	ecked By:	ULI	<u>F</u>
	ing Co	mpa	any.			al Boring	gs Inc							Casing:		npler:		1		bservations	_	
	man: Desig	n Re	ep.	-	Erik D	elpriore ucklev		_					Type:	H.S.A. 3.25 in.		85 8 in.	Date	Depth (ft)	Elev. (ft)		Notes	
	e Start			-		6, 2005		Date	Finished	April 2	9, 2005	6	Hammer Wt.	NA		0 lbs	¥ 5/9/05	2.2	892.5			
	Coordi			- vation	(feet)			E. Co 94.74	ordinate				Hammer Fall: Rig Type:			<u>) in.</u>	¥ ¥	+				
Stat				- union	(1001)	Offset:							Hammer Type		afety		T					
	æ					S	ample	Informa	tion				Strat				Sa	nple I	Descri	ption		
	Casing Blows/ft			ы							ime	(%)	Descrip	otion	Symbol							
Depth (ft)	sing B	Number	e e	Penetration (inches)	Recovery (inches)	Depth (ft)	E	Blows / 6 1	nch Interv	al	Coring Time (mm./ft)	Moisture Content (%)	Depth &		ŝ							
å	Ca		Type			<u> </u>	0-6	6 - 12	12 - 18	18 - 24	ΰĒ	žΰ	Elevation(feet)		<u>34</u>		sification System. B			to modiu	m SANI	
⊢		1	SS	24	20	0.0	1	1	1	2			1.0				d SILT, trace l				III SANL	,
\vdash														Ţ					-			
				-																		
5																						
		2	ss	24	15	5.0	10	12	13	17							edium dense, I coarse SAND	orown	CLAY	YEY SILT	and fin	e
⊢																						
⊢																						
10																						
<u> </u>		3	ss	24	14	10.0	10	10	15	18							dium dense, l			and fine	to coars	se 🛛
																-5A	ND, trace fine	Grav	ei			
⊢	_																					
15	_	4	SS	24	11	15.0	13	21	35	40							ry dense, brov		e to m	edium S	AND and	d
																SIL	T, little fine G	ravel				
																		-				
20		5	ss	24	16	20.0	18	25	29	34						Ve	ry dense, brow	vn Sll	Tano	t fine to r	nedium	
\vdash		5	33	24		20.0	10				$\left - \right $						ND, trace fine					
				-																		
25																			4 -			-
		6	SS	24	21	25.0	20	21	34	50						Ve SIL	ry dense, brov _T, trace fine (vn tine Gravel	e to m	edium S	AND and	3
-								<u> </u>													-	
\vdash	-																					
30																						
Remarks	Ob	ser	vati	on we	ell ins	talled	to a de	pth of 3	3 feet		rade.	. (2-in					a 10 foot long ed both above					
Rem	bei	ow	gro	und s	surfac	æ.)				•			k from 17 to			PidO		inter	Janu		, 10 110	.00
Note	es: 1) 9 2) 1	Strati Wate	ificati er leve	on lines I readin	represe gs have	ent appro: been ma	ximate bou ide at times	indary betw s and unde	veen mater	al types, ti s stated, flu	ansition	ns may be ns of gro	e gradual undwater may occ	cur due to of	ther fac	tors that	an those present at th	e time m	easurem	ients were ma	de. AC =	
	3)	After Abbr	r corin reviati	g;NR≕ ons:A	= Not R = Auger	ecorded. r, C = Co	re; D = Dr					-					= Shelby Tube; V = V					
						/Hammer = 1-10%,)-20%; Sor	ne = 20-35	%; And = :	35-50%								Bori	ng No.:	S-9	

	_																LOG			Bor	ring No.:	S-9	
			I	м		OR								Patte	rojec rsor	n Cr	ossing				ge No.: e No.:	<u>2 of 2</u> 664-0	
					Mic	984 5	Southfor y, Conne	cticut 0					Hydr Patte	rogeol erson a	ogic and	al Ir Ken	nvestig it, New	ation York				ULF	
Bon	ng Co	ompa		· · · · ·		al Boring					_			Casing.	San	npler:			Ground	water O	bservations		
	man			_		elpriore								H.S.A.		SS	Da	ite	Depth (ft)	Elev (ft)		Notes	
	Desig Start		p	_	Jeff Bu April 2	uckley 6, 2005		Date	Finished:	April 2	9 2005	5	I.D Hammer Wt.:	3.25 in. NA		8 in.) Ibs	▼ 5/9	9/05		892.5			
	oordi		:	_					ordinate		-1		Hammer Fall	NA) in.	¥			002.0			
		urfac	e Ele	vation	. ,			94.74					Rıg Type.	Diedric)	¥						
State	on:					Offset							Hammer Type:	S	afety		¥						
	₩,					S	ample l	Informa	tion				Strat Descrip					San	iple [Descri	ption		
£	Casing Blows/ft			ion	λ.	f)		N		-1	Coring Time (min./ft)	Moisture Content (%)	Descrip	lion	Symbol								
Depth (ft)	sing I	Number	ъ.	Penetration (inches)	Recovery (inches)	Depth (ft)		Blows / 6 1	nch Interv	al	ring in/fit)	ntent	Depth &		Ś								
De	Cæ		Type		8 <u>6</u>	<u> </u>	0-6	6 - 12	12 - 18	18 - 24	ЗĒ.	йů	Elevation(feet)	T :0			ification Sy						
		7	SS	24	17	30.0	24	29	36	53			Glacial (Continu			Ve fine	ry dense e Gravel	, brow	n fine	SAN	ID and S	ILT, little	
													33.0 Bottor	n 861.7	1/2								
													of Explora	ation									
35					-								at 33.0	π									
								<u> </u>															
		_																					
	-																						
40																							
			_																				
45																							
		_																					
50																							
		_																					
55																							
		-																					
		_																					
60																							
ks																							
Remarks																							
Ľ																							
Note	s. 1) s	Strati	ficatio	on lines	represe	ent approv	kimate bou	indary betv	veen mater	al types, tr	ansition	ns may b	gradual										
	-2) /	wate After	corin	g, NR =	s nave Not R	e been ma	de at times	s and under	condition	s stated, flu	ictuation	ns of gro	undwater may occ							easurem	ents were ma	de AC =	
	۰ N	VOR	/H = '	Weight	of Rod/	Hammer				Piston Sarr %, And = 3		= Split	Spoon, SSL = 3.5	uicn ID Spl	и эроо	n, 51 =	- snelby Tub	we; $\mathbf{v} = \mathbf{V}$	ine;	Bori	ng No.:	S-9	

Γ	_																LOG			Bor	ring No.:		-9A
			I	N	ical E	OR ngineer 984	P O	d Road					Hyd		ogic	n Cr al II	rossing nvesti	gation		File	ge No.: e No.: ecked By	_66	of 1
				<u> </u>	one: 20	3-758-		Fax:	203-75	8-8842							T						
	ing Co eman:		any:	-	Genera Rick P	al Boring Iosa	gs Inc						Туре	Casing: H.S.A.		npler: SS		Date	Depth		bservation	Notes	
	Desig		р. ⁻	-	Jeff Bu								LD	3.25 in.		8 in.			(ft)	(ft)			
	e Stari Coordi		:	-	May 9,	, 2005			Finished.	May 9,	2005		Hammer Wt Hammer Fall.	NA NA		0 lbs) in.	¥ ¥	5/9/05			Dry to 1	<u>5 ft.</u>	
		urfac	e Ele	vation	(feet):	0	89 ft	94.5					Rig Type.	Diedric		7	¥ ¥						
Stat						Offset:	ample I	nforma	tion				Hammer Type Strat		afety		1+	Som	nia F		ntion		
(Ų)	Casing Blows/ft	er		ation s)	ery s)				nch Interv	al	Coring Time (min./ft)	Moisture Content (%)	Descrip		Symbol			341	ipie L	Descri	puon		
Depth (ft)	Casin	Number	Type	Penetration (inches)	Recovery (inches)	Depth (ŕt)	0-6	6 - 12	12 - 18	18 - 24	Coring (min./	Moist	Depth & Elevation(feet))		Class	sification	System: Bu	rmister				
													1.0 Tops	oil	<u>. 1</u>								
													Glacial	Till 893.5									
5																							
Ľ																							
10					-																		
10	-																						
													45.0										
15													15.0 Botto of Explor										
													at 15.0										
20											-												
											-												
			-																				
25																							
											·												
		-			_																		
30	Sa	mnl		not to	ken ir	n borir		lere ad	vanced	to a do		f 15 f	et, where a	n obeon	Vation	n we		netallad	Sail	lithe		arred f	om
Remarks	obs Ob to bel	serv ser 15 f ow	ved a vatio eet, grou	auge on we with und s	r cutti ell ins solid surfac	ings. talled riser a æ.)	to a de above.	oth of 1 Filter s	5 feet t and pla	below g liced arc	rade. ound	(2-in scree	ch diameter 1, and bento	PVC pi	pe, w	vith a	a 10 foo	t long ().01 ir	nch sl	lotted so	reen f	rom 5
Note	2) v 3) /	water After Abbre	corini corini eviatio	g; NR =	gs nave - Not Re - Auger	corded	de at times re: D = Dri	and under	conditions		ctuatio	ns of grou	gradual. indwater may occ poon, SSL = 3.5							easurem	ents were m	ade AC	=
	4) F	ropo	/H = \ ortions	Weight Used:	ot Rod/ Trace =	Hammer 1-10%;	Little = 10	-20%, Som	ne = 20-359	%; And = 3	5-50%									Borir	ng No.:	S-9	A

Γ														E	BOF	RIN	[G]	LO	G		Bo	ring No.:	S-10
				~ .		_			-						P	roject	t Nar	ne				ge No.:	1 of 2
			1	N		OR	PO		TE									ossir				e No.:	664-01
			Geo	otechr		984	Southfor	d Road	ental Con	isultants									tigation w Yorl				:ULF
			Τe	elepho		3-758-		cticut 0 Fax	203-758	8-8842													
	ing Co man	mpa	my	-	Gener Rick P	al Bonng	gs Inc			_			Type:	<u>Cas</u> H.S	-		<u>ipler:</u> SS		Date	1	Elev.	bservations	
	Desig	n Re	p.		Jeff Bu		-						1.D		5 in.	1.38		·	Date	(ft)	(ft)		Notes
	e Start Coordi			-	April 2	6, 2005			Finished: ordinate	April 2	7, 2005	5	Hammer W Hammer Fr) Ibs in.	¥ ¥	5/9/05	10.9	875.1		
				- vation	(feet)		8	86.0				-	Rig Type		Diedric			¥					
Stat	ion:					Offset:						<u> </u>	Hammer T	ype.	Şa	afety		Ŧ					
	s/ft					S	ample I	Informa	tion					trata criptio	n	-			Sa	nple [Descri	ption	
ŧ	Casing Blows/ft	r) tion	ÈC	(ŧ)	6	Blows / 6 1	nch Interv	al	Coring Time (min./ft)	Moisture Content (%)	200			Symbol							
Depth (ft)	asing	Number	Type	Penetration (inches)	Recovery (inches)	Depth (ft)		[Oring min/f	Aoistu Conten	Depth &	faat			Class	c	6				
H	-	Z 1	ss	₫. :Ξ 24	≈ ⊡ 8	0.0	0-6	6 - 12	12 - 18 2	18 - 24 4	55	20	Elevation(1	opsoil		<u>× 14</u>	Ve	ry loo		browr	fine	to mediu	IM SAND,
													2.0			4 2	sor	ne Sil	t, trace F	Roots			
														cial Till	884.0								
5	-	2	SS	24	18	5.0	4	4	7	9							Me	dium	dense o	live b	rown	fine to m	edium
⊢		-	20	24	10	5.0	4	4											nd SILT				
-	_	-										-											
10							-													P 1		F	
		3	SS	24	10	10.0	5	7	10	10					¥				dense, d nd SILT	live b	rown	fine to m	edium
												-											
15																							
		4	SS	24	21	15.0	9	14	17	19									live brov			d fine to	coarse
					-								17.5										
\vdash	_												Во	oulder	868.5								
20													19.0 Glad	cial Till	867.0								
		5	SS	24	15	20.0	11	14	18	21									live brov t, trace f			nedium S	AND,
																	501		.,	ne G	avei		
-		_																					
25		6	SS	15	12	25.0	9	58	100/3"													e to medi	um SAND
			_										26.5 Be	drock	859.5				<u>f</u> , trace f ? (see re				
		0-1	-c-	-60-		-26.5-					5				000.0	\bowtie	01	2.00	. (55516	and K	o ben	,	
											-5												
30					L	L										<u>//</u> /							
ks	fror	n c	ore	barre	el and	was I	ost in b	orehole	e. As a	result,	bedr	ock co	uld not b	e clas	sified	,							ample fell
Remarks																							otted screen 112 to 18
	incl	nes	bel	ow g	round	d surfa	ice.)			•			from 16 t										
Not	^{es:} 1) S 2) V	strati Vate	ficatio r levei	on lines I readur	represe gs have	ent appro: been ma	ximate bou	indary bety	veen mater	al types, tr	ansitio	ns may b	e gradual. undwater may	_		her fact	tors that	in those	present at th	e time m	easurem	ients were ma	ade. AC =
	3) A	After Abbre	corin eviatio	g; NR = ons: A	= Not R = Auger	ecorded.	re, D = Dri					_	Spoon; SSL =										
								2004 500		% And = 3	5 50%										Bori	ng No.:	S-10

Γ					_								BO					OG			Bo	ring No.:	S-1	0
			(GE	. 0			8 5 1	G	N					oject						Pag	e No.:	2 of	2
			l Geo	N otechn	-	O R ingineer	P O rs and Er	R A tvironme	ntal Cor				Hydroge	eolo	ogica	al Ir	nve	sing estigati	on		File	e No.:	664-	01
			Т	elepho	Mic ne: 20	984 : idlebury 3-758-	Southfor y, Conne 8836	cticut 0	6762 203-75	8-8842			Patterso	n a	nd k	Ken	nt,∣	New Y	ork		Che	ecked By	: <u>UL</u>	F
	ng Co	ompa	_	-	Gener	al Boring							Casing		Sam							bservations		
	man Desig	n Re	۶p.	_	Rick P								Type <u>H.S.A</u> (.D: <u>3.25 in</u>					Date	I	Depth (ft)	Elev (ft)		Notes	
	Start			_	April 2	6, 2005				April 27	7, 2005	5	Hammer Wt.: NA		140		¥	5/9/05	;	10.9	875.1			
				-vation	(feet)			E. Co 36.0	ordinate				Hammer Fall. NA Rig Type Die	edrich	30 i D-47		¥							
Stat	on:					Offset:						-	Hammer Type:	Sat	fety		¥				i			
	vs/ft	L				s	ample I	ntorma	tion				Strata Description		-				Samp	ole D	Descri	ption		
(ij) (Casing Blows/ft	ber		Penetration (inches)	es)	(Ų) (E	Blows / 6 u	nch Interv	al	Coring Time (min./ft)	Moisture Content (%)			Symbol									
Depth (ft)	Casın	Number	Type	Penet (inch	Recovery (inches)	Depth (ft)	0-6	6 - 12	12 - 18	18 - 24		Moist	Depth & Elevation(feet)			Class	sifica	ation System	n: Burn	nister				
\square											5 		Bedrock 31.5 (Continued)		X									
													51.5	54.5										
										-			at 31.5 ft											
35																								
40																								
		-																						
	_																							
45																								
	_																							
		_																						
50		_																						
	-																							
	_																							
55	_																							
	_										•													
60																								
Remarks																								
Ren																								
Note	s: 1) s	Strati	ficatio	on lines	represe	nt approx	kimate bou	ndary betw	veen mater	al types, tr	ansition	is may be	gradual		_						-			
	2) }	wate After	corin	g, NR =	s nave Not Re	ecorded	de at times	and under	condition	s stated, flu	ctuation	ns ot gro	undwater may occur due to Spoon; SSL = 3.5 [nch ID					-			asurem	ents were m	ade AC =	
	v	VOR	/H =)	Weight	of Rod/	Hammer				%; And = 3		spin		Spin	Spoon		Sil		+ all		Bori	ng No.:	S-10	

Γ														BOF		I G] at Nar				Bor	ring No.:	S-'	11
					C nical E Mic	OR ngineer 984	P O rs and Er Southfor y, Conne	<i>ivironme</i> d Road cticut 00	ntal Cor				Hydi Patte	Patte rogeole erson a	rsor ogic	n Cro al Ir	ossing nvesti	gation		File	ge No.: 9 No.: 9 No.:	<u>1 0</u> <u>664</u> :UL	-01
Во	ring Co	omp				al Boring		<u> </u>	205-75	0-0042				Casing [.]	San	npler:			Ground	water O	bservations		
	reman	-		-	Rick F								1	H.S.A.		ss	- I	Date	Depth (ft)	Elev (ft)		Notes	
	oDesig te Star		ep.	-	Jeff Be April 2	uckley 7, 2005		Date	Finished [.]	April 2	8, 2005	5	I.D. Hammer Wt	<u>3.25 in.</u> NA		18 in. O Ibs	¥ :	5/9/05		876.8			
	Coord		r	_		_		E. Co	ordinate.				Hammer Fall) in.	¥						
	ound S tion:	urfa	ce Ele	vation	• •	 Offset:		38.09					Rig Type ⁻ Hammer Type:		h D-47 afety	7	¥ ¥						
		I					ample I	nforma	tion				Strat					San	nnle [Descri	ntion		
h (ft)	Casing Blows/ft	ber		Penetration (inches)	very es)	Depth (ft)	-	llows / 6 u		al	Coring Time (min./ft)	Moisture Content (%)	Descrip		Symbol			5411	iipie i	25011	puon		
Depth (ft)	Casir	Number	Type	Penel (inch	Recovery (inches)	Dept	0-6	6 - 12	12 - 18	18 - 24	Coru (min	Mois	Depth & Elevation(feet)	1		Class	ification S	System: Bu	rmister				
		1	ss	24	9	0.0	1	1	2	2			1.0 Topso		<u></u>			e, dark l , trace (-			to mediu	Im SAN	ID
	<u> </u>												Glacial	Till 886.0		and		, 11000 (-					
\vdash	\vdash																						
	5																						
		2	SS	24	15	5.0	4	6	8	12						Me Silt	dium d	lense, fi fine Gra	ne to avel	medi	um SAN	D, som	е
																	.,					-	
	-																						
10	,	Ī												_									
		3	ss	24	20	10.0	7	11	17	21				¥				lense, b ace fine			and fine	to coar	rse
\vdash	-																						
	+																						
15	5															No	r0001/	n (info	rrod i	ould	er/cobble		
-	-	4	SS	0	0	15.0	100/0"									NO	Tecove	ery (inne	neu i			:)	
90/92 20/92)																						
		5	SS	9	9	20.0	16	100/3"			ļ					ver ∖ <u>SA</u>	ry dens ND, tra	se, brow ace fine	n SIL Grav	l and el	d fine to	medium	`⁄
0. D	+										<u> </u>												
		\vdash																					
	;																	-					
DESIC		6	SS	24	18	25.0	9	12	16	17								iense, b ace fine			and fine	to med	lium
GEO	-	\vdash									 												
S.GPJ	+																						
З С С С С С С С С С С С С С С С С С С	,																						
SORING *																							
19/03 BC Remarks																							
R 8																							
BORING LOG MC 12/19/03 BORING LOGS GPJ GEODESIGN STANDARD GDT 8/26/05 Z Remarks	2)	Wate	r leve	i readin	igs have	e been ma	ximate bou ide at times	ndary betv and under	veen mater	ial types, ti s stated, flu	ransitio Ictuatio	ns may b ns of gro	e gradual undwater may occ	cur due to ot	her fac	tors that	an those pr	resent at the	time m	easurem	ents were m	ade AC =	
ORING	3)	Abbı WOF	eviati VH =	ons. A = Weight	= Auge of Rod	/Hammer				Piston San %; And = .			Spoon; SSL = 3.5	Inch ID Spl	it Spoo	on, ST =	= Shelby T	ſube, V = V	ane,	Bori	ng No.:	S-11	
ŏĹ		y																			0		

								111									LOG	i		Bor	ing No.:		1
			ç	GE				SI SI	Ģ	N					rojec		ossing	~			e No.:	<u>2 of</u>	2
			Geo	otechn	nical E	ngineer 984 S	rs and Er Southfor	nvironme		isultants			Hydr Patte	rogeol	ogic	al Ir	nvesti	e gation v York			No.: ecked By:	<u>664_(</u>	
					one: 20)3-758-8	8836		:: 203-758	8-8842							1						
Bori Fore	ng Co man	mpa	uny:	_	General Rick P	al Boring	is lnc							Casing: H.S.A.		n <u>pler:</u> SS		Date		Elev.	bservations	Notes	
Geo	Desig		p.	_	Jeff Bu	uckley							I.D	3.25 in.	1.3	8 in.]		(ft)	(ft)			
	Start oordi			-	April 2	27, 2005			Finished: oordinate:		8, 2005	j	Hammer Wt Hammer Fall.	NA NA) in.	¥ t	5/9/05	10.2	876.8			
Grou	and Su			vation	· ·			86.09					Rig Type:	Diedric	th D-47		¥ ¥						
Stati	on					Offset:		Informs	tion				Hammer Type		afety		Ŧ	0	· · · ·				
	ws/ft		 _					Informa			6		Strat Descrip					San	nple L	Descri	ption		
(¥)	Casing Blows/ft	Der		Penetration (inches)	very es)	(¥)	F	Blows / 6 u	nch Interv	ral	Coring Time (min/ft)	Moisture Content (%)			Symbol								
Depth (ft)	Casın	Number	Type	Penet (inch	Recovery (inches)	Depth (ft)	0-6	6 - 12	12 - 18	18 - 24	Corin (min	Moist	Depth & Elevation(feet)			Class	sification S	System: Bu	rmister				
		7	SS	24	24	30.0	8	10	13	17			Glacial (Continu					ense, b ice fine			and fine	to medi	um
Ц																			0.0.				
\vdash						 					-												
35											-												
30		8	SS	24	15	35.0	20	24	25	29						De	nse, br ce fine	own fine	e to n	nediur	m SAND	and SIL	Τ,
																lia	Ce line	Gravei					
							<u> </u>																
											$\left \right $												
_ 40		9	SS	9	4	40.0	28	100/3"													edium S/	AND and	d
																\ <u>Sil</u>	T, trac	<u>e fine G</u>	iravel				
\vdash		_			<u> </u>																		
45		10	SS	24	24	45.0	10	14	19	21	+								e to m	nediur	m SAND	and SIL	.т,
																tra	ce fine	Gravel					
								_															
	_						<u> </u>				\square		49.0 Bottor	n 838.0									
50								╂───	<u> </u>		$\left \right $		of Explora at 49.0	ation	1								
	-	-			<u> </u>						$\left \right $												
55							<u> </u>																
\square											+												
H				-																			
60																			_				
Remarks	Ob 39 bel	ser to 4 ow	vatio 49 fe groi	on we eet, w und s	ell ins vith so surfac	stalled olid risc ce.)	to a de ser aboy	et. (Inferent epth of 4 ve. Filte pre hole	49 feet l er sand	below g I placed	arou	. (2-in and sc	ch diameter reen, and be feet.	PVC pi intonite	pe, w seal	vith a plac	a 10 foo ed both	ot long (above	0.01 i filter	nch s sand	lotted scr and 12 to	een fror 18 inch	n 1es
Note	- 2) V	Nate	er leve	readin	igs have	ent approx e been ma lecorded	ade at times	undary betw es and under	veen mater r condition	nal types, tr is stated, flu	ransition uctuation	ns may b ns of gro	e gradual undwater may occ	ur due to o	ther fac	tors that	an those pr	resent at the	time m	easurem	ients were ma	de AC =	
	3) A V	Abbr NOR	eviation VH = 1	ons. A Weight	= Auger t of Rod/	r; C = Cor /Hammer	ore, D = Dr r		Grab; PS = me = 20-35				Spoon, SSL = 3.5	Inch ID Sp	lit Spoo	n; ST :	= Shelby T	ube; $V = V$	ane;	Bori	ng No.:	S-11	

ſ															BOI				<u>.</u>		Boi	ring No.:		<u>}-12</u>
				C I Geo	5 E N otechn	с ical Ei	O R ngineer 984 S	P O s and En Southford	d Road		N D asultants			Hyc	Patte Irogeol	ogic	n Cro al In	ossin ivest	igation		File	ge No.: e No.: ecked By	6	64-01
					<u> </u>	ne: 20	3-758-8		Fax:	203-75	8-8842							т, то г		_				
	Borin Foren	g Con nan∵	mpa	ny [.]	_		al Boring elpriore	is inc						Type	<u>Casing:</u> H.S.A.		<u>ipler:</u> SS		Date	T	Elev	bservations	Notes	
		esign	n Re	p.	_	Jeff Bu								I.D	3.25 in.	1.3				(ft)	(ft)		110103	
		Starte xordir			-	April 2	7, 2005			Finished:	April 20	3, 2005	j	Hammer Wt Hammer Fall:	NA) in.	¥ ¥	5/9/05	16.9	875.4			
				e Ele	vation				92.33					Rıg Type:	Diedric	ch D-50	_	¥	_	1				
ł	Static	n: T					Offset		- forma	tion				Hammer Type		afety		¥			<u> </u>			
		/fl			_		3	ample I	morma	uon	-	e		Stra Descri		lod			Sai	nple (Jescri	ption		
	Depth (ft)	Casing Blows/ft	Number	e	Penetration (inches)	Recovery (inches)	Depth (fì)	В	lows / 6 u	nch Interv	al	Coring Time (min./ft)	Moisture Content (%)	D 10		Symbol								
	2	Casi	ž	Type	Pene (incl	Rec (incl	Dep	0-6	6 - 12	12 - 18	18 - 24	Cor (mu	Moi Con	Depth & Elevation(fee					System. B					<u></u>
$\left \right $	_		1	SS	24	24	0.0	2	2	4	7			1.0 Glacia				ce Ro			ealur	n SAND	and	SILI,
	-	-																						
	┥				_																			
	5																-					<u></u>		0.11
┢	_	_	2	SS	24	18	5.0	9	20	29	45						trac	nse, b ce fine	e Gravel	e to c	oarse	SAND,	some	e Silt,
┢	+	_																						
┢	╉	_																						
	10				_																		_	
			3	SS	17	14	10.0	13	17	100/5"									ise, brov e fine Gr		e to co	oarse SA	AND,	some
┢	+	_			-																			
┢	+	-																						
F	15													15.0										
			4	SS	1	0	15.0	100/1"						Boule Cob			<u>∖No</u>	recov	very					
┢	+													17.5	¥									
┢	+													Glacia	al Till 874.									
6/05	20																							
18/2			5	SS	24	6	20.0	27	31	35	40		_						ise, brow ce fine (nedium S	SAND	and
RD .GI	_					-						-												
ANDA									-			\square												
N ST	25																							
DESIG			6	SS	24	20	25.0	20	23	35	36								nse, brow race fine			d fine to	coars	e
GEO	+	_				-						-												
S.GPJ	+		\square									-												
LOG	30																							
ORING																								
/03 B(Remarks																							
12/19	×																							
BORING LOG MC 12/19/03 BORING LOGS GPJ GEODESIGN STANDARD .GDT 8/26/05	Notes	2) V	Wate	r leve	readin	igs have	e been ma	ximate bou ade at times	undary betw s and unde	ween mate r condition	rial types, t ns stated, fl	ransitio	ns may b ons of gro	e gradual undwater may o	ccur due to o	other fac	ctors the	an those	present at th	e time n	neasuren	nents were m	nade A	C =
ORING		3) A V	Abbr WOR	eviatı VH =	ons. A Weight	= Auge of Rod	/Hammer				Piston Sar 5%, And =			Spoon; SSL = 3.	5 Inch ID Sp	olit Spoo	on, ST -	- Shelby	Tube, V =	Vane;	Bori	ing No.:	S-'	12
ы		.,,	. •P										_											

Γ														BOI				G		Bo	ring No.:	S-12	
			Ċ	GE	∎_o) D o r		SI SI	G	N				Patte		n Cr					ge No.:	2 of 2	
			Geo	otechn		984	Southfor	nvironme d Road ecticut 0		isultants				rogeol	ogic	al Ir	nves	tigatior ew Yor			e No.: ecked By:	<u>664-01</u>	
Bon	ng Co			· ·	ne: 20	3-758-	8836		203-75	8-8842				Casing	San	npler	<u> </u>		Ground		Observations		
	man	япра	шіу	-		elpriore	ys nic						Type:	H.S.A		SS		Date	Depth	Elev		Notes	
	Desig Start		ep.	-	Jeff Bu				Tion indexe also					3.25 in.		38 in.	<u> </u>	-	(ft)				
	oordi			-	April 2	7, 2005			ordinate	April 20	8, 200:	>	Hammer Wt Hammer Fall:	NA NA		0 lbs 0 in.	¥ ¥	5/9/05	16.9	875.4			
		urfac	e Ele	vation	. ,			92.33					Rig Type:	Diedric		0	I I		-				
Stat	on					Offset		- farma	tion				Hammer Type		afety		1						
	vs/ft				-			nforma					Strat Descrip		9			Sa	mple [Descri	ption		
(ŧ)	Casing Blows/ft	ъ		ation s)	s)	(ŧ)	E	Blows / 6 in	nch Interv	al	Coring Time (min/ft)	Moisture Content (%)			Symbol								
Depth (ft)	Casing	Number	Type	Penetration (inches)	Recovery (inches)	Depth (ft)	0-6	6 - 12	12 - 18	18 - 24	Coring (mm/	Moist	Depth & Elevation(feet)			Class	sificatio	n System: B	urmister				
—		7	SS	24	18	30.0	24	24	32	41			Glacial	Till		Ve	ry der	nse, brov	wn SIL	T and	d fine to r	nedium	_
													(Continu	lea)		SA	ND, t	race fine	Grav	el			
																							-
											 		34.5										
35		C-1	-c-	-60-	-56-	-34.5		C= 93%;	RQD=	52%]	-4-			ck 857.8	K	Fa	ir Qua	ality, gray	, GNE	ISS			_
	-	\square									-4-												-
											-4				\bowtie								
											-4-				\mathbb{M}								
40											<u>–</u> 4—		39.5 Botto	m 852.8									_
													of Explor at 39.5	ation									
	_																						
45	_		-																				
			_																				
]										
			_																				
50																							
			-																				
	_																						
	-		-																				
55																							
\vdash	_																						
60	-		-																				
Remarks	Ob 29 bel Fal	sen to 3 ow ling	vatio 39 fe grou 1 hea	on we eet, w und s ad te	ell ins vith so surfac st per	talled blid rise æ.) forme	to a de er abov ed in bo	pth of 3 /e. Filte re hole	9 feet t er sand with a v	pelow g placed wick fro	rade. arou m 23	(2-in Ind sci to 25		PVC pi	pe, w seal	vith a place	a 10 fo ed bo	oot long th above	0.01 in filter	nch s sand	lotted scr and 12 to	een from 18 inches	s
Note	- 2) 1	ale	i ievei	reaum	gs nave	ent approx been ma ecorded.	kimate bou de at times	ndary betw and under	conditions	al types, tr s stated, flu	ansition	ns may be ns of gro	e gradual undwater may occ	ur due to ot	her fac	tors that	an those	present at th	e time m	easurem	ients were ma	de AC =	
	3) A V	Abbre VOR	eviatio /H = V	ons. A = Weight	Auger of Rod/	, C = Cor Hammer				Piston Sam %: And = 3			Spoon; SSL = 3.5	Inch ID Spl	it Spoo	on: ST =	= Shelby	Tube; V = 1		Bori	ng No.:	S-12	-

														BOI				G	_	Bo	ring No.:	
				N Ditechr	<i>nical E</i> Mic	984	P O s and Er Southfor y, Conne	rvironme d Road cticut 0		nsultants			Hydi Patte	Patte	ogic	n Cr al Ir	rossir nves	ng tigation ew Yorl	K	File	ge No.: e No.: ecked By	<u> 1 of 2</u> <u> 664-01</u> : <u> ULF</u>
Bor	ing Co	ompa				al Boring		Tax	. 205-75	0-0042				Casing:	Sarr	npler			Ground	water O	bservations	
	eman			-	Rick P									H.S.A.		SS	-	Date	Depth (ft)	Elev (ft)		Notes
	Desig e Start		ep.	-	Jeff Bu April 2	8, 2005		Date	Finished	April 2	9, 2005	5	I.D.: Hammer Wt	3.25 in. NA		8 in O Ibs	Ŧ	5/9/05	2.2			
	Coordi			-					ordinate				Hammer Fall	NA) in.	¥					· • •
Gro Stat		urfac	ce Ele	vation	(feet):	Offset:		38.26					Rig Type Hammer Type:	Diedno	afety	7	¥ ¥					
						s	ample I	nforma	tion				Strat	a				Sar	nple [Descri	ption	
(Ų)	Casing Blows/ft	er		ation s)	s)	(¥)	в	Blows / 6 u	nch (nterv	al	Corung Time (min./ft)	Moisture Content (%)	Descrip	tion	Symbol				r			
Depth (ft)	Casing	Number	Type	Penetration (inches)	Recovery (inches)	Depth (ft)	0-6	6 - 12	12 - 18	18 - 24	Coring (min./	Moistu Conter	Depth & Elevation(feet)			Class	sification	n System B	imister			
<u> </u>	-	1	SS	24	10	0.0	1	1	2	1			1.0 Topso		<u>x 1</u> ,	Ve	ery loo	se, dark			SAND a	nd SILT,
								_					Glacial	Till 887.2		tra	ice Ro	oots				
														Ŧ								
		Н																				
5		2	SS	24	12	5.0	6	11	14	19						Me	edium	dense, b	rown	fine t	o mediur	n SAND,
		-																lt, trace f				
10																	neo t	orown fin	e to n	odiu	m SAND	and SILT,
		3	SS	24	18	10.0	15	17	17	19								to coars				
15																_						
		4	SS	24	24	15.0	9	14	19	21								prown fin e Gravel	e to n	nediur	n SAND	and SILT,
-																						
20																						
		5	SS	24	12	20.0	3	9	11	12						Me	edium	dense, g nd SILT,	ray/bi trace	rown i fine (fine to m Gravel	edium
		_																				
25		_																				
25		6	SS	24	24	25.0	6	10	12	13								dense, g				fine to
																C08	arse S	SAND, tra	ice co	arse	Gravel	
		_																				
30					I	L																
rks																						
Remarks																						
Note	2) 1	Vate: After	r level coring	l readin g; NR -	igs have = Not Ri	been ma ecorded.	de at times	and under	conditions		ctuation	is of grou	gradual indwater may occu							easurem	ents were ma	ade. AC =
	v	VOR	/H = 1	Weight	of Rod/	Hammer				%, And = 3	-	- opin a	yoon, ooc - 5.5	anda ito opi			Snelby	x uue, v = v	ane,	Bori	ng No.:	S-13

Γ																_	LOC	3		Bo	ring No.:	S-13
			•	G E	: o	D		5 I	G	N					rojec					Pag	ge No.:	2 of 2
			l Geo	N Ditechn	-	O R ngineer	P O s and Er	R A	T E ental Con	-			Hvd	Patte rogeol						File	e No.:	664-01
					Mid	984 3	Southfor , Conne	d Road ecticut 0					Patte	ersona	and	Ken	nt, Nev	w York	ζ.	Che	ecked By	U <u>LF</u>
Bor	ng Co	mpa		· · ·		al Bonng								Casing:	Sam	pler			Ground	water C	bservations	
	man: Desig	- P.	_	-	Rick P							-	Type: I.D.	H.S.A. 3.25 in.	S	S 8 in	{	Date	Depth (ft)	Elev. (ft)		Notes
	Start		.	-		8, 2005		Date	Finished:	April 29	9, 2005	ò	Hammer Wt.	NA) lbs	¥	5/9/05	2.2	886.0		
	oordi			-	(6		—		ordinate				Hammer Fall.		_	in	¥ ¥		 		<u> </u>	
Gro		urtac	te Ele	vation	` '	Offset		88.26					Rig Type: Hammer Type		afety		¥					
						S	ample l	Informa	tion				Stra	ta				San	nple [Descri	ption	
	Casıng Blows/ft			e				· · ·			me	(%	Descrip	otion	Symbol				•			
Depth (ft)	ıng Bl	Number	Ð	Penetration (inches)	Recovery (inches)	Depth (ft)	E	Blows / 6 i	nch Interv	al 	Coring Time (min /ft)	Moisture Content (%)	Date		SyI							
Dep	Cas	ž	Type	Pen (inc	Rec (inc	Dep	0.6	6 - 12	12 - 18	18 - 24	ũ Cor	Cor	Depth & Elevation(feet					System: Bu				
		7	SS	24	24	30.0	16	27	38	41			Glacial (Contin				ry dens le fine (/brow	n SIL	I and fin	e SAND,
\vdash																						
┝─					-								33.0 Bould	ler 855.2								
35													1									
													36.0									
												_	Glacial	Till 852.2								
┝		_											-									
		_																				
_40					-								41.0									
													Botto of Explo									
													at 41.									
45													-									
					<u> </u>								{									
													1									
50													-									
\vdash																						
\vdash					-																	
55		Η											1									
					-								-									
-		-																				
													1									
60	Init	ial :	aug	er ref	usal :	at a de	epth of	33 feet	Corer	d throug	hah	oulde	r from 33 to	36 feet		ler h	it adva	nced the	ouah	a bo	ulder to r	efusal at a
Remarks	dep	oth	of 4	1 fee	et (infe	erred t	op of b	edrock)).	-			ich diamete						-			
Rem	21	to 3	31 fe	eet, v	vith se	olid ris																o 18 inches
<u> </u>	Fal	ling) he	ad te	surfac st pe	rforme	d in bo	rehole,	with a	wick fro	<u>m 23</u>	to 25	feet below	grade.				_				
Not	2) י	Wate	r leve	l readir	igs have	ent appro: been ma ecorded	kimate bou de at time	undary bety s and unde	veen mater condition	ial types, tr s stated, flu	ansitio	ns may b ns of gro	e gradual oundwater may oc	cur due to o	ther fact	tors that	an those p	resent at the	time m	easuren	nents were ma	ade. AC =
	3)	Abbr ₩OR	eviation VH =	ons: A Weight	= Auger	r; C = Co /Hammer				Piston San %. And = 3			Spoon, SSL = 3.5	Inch ID Sp	lit Spoo	n; ST	= Shelby '	Tube, $V = V$	ane,	Bori	ng No.:	S-13

Γ																_	LOG		Bor	ing No.:	S-13A
			c	GE	= 0	D		(SI	G	N				P	rojec	t Nar	me		Page	e No.:	1 of 1
			l Geo	_ N	ີເ	OR	P O rs and Er		T E	-			Hvd	Patte	rson	n Cre al Ir	ossing nvestigatior		File	No.:	664-01
					Mid	984	Southfor y, Conne	d Road									it, New Yor		Che	cked By:	ULF
Bor	ing Co	mpa		· ·		al Boring								Casing.	<u>Sam</u>	npler:		Ground	water Ol	bservations	
	eman: Desig	n Re	n	-	Rick P								Type:	H.S.A. 3.25 in.		8 in.	Date	Depth (ft)	Elev (ft)	1	Notes
	e Start		P	_	May 9,			Date	Finished	May 9,	2005		Hammer Wt.:	NA) Ibs	₣ 5/9/05			Dry to 15	ft
1	Coordi und S			- vation	(feet)			E. Co 88.0	ordinate.				Hammer Fall: Rig Type.	NA Diedric		<u>in.</u>	I I				
Stat					• •	Offset:	ft						Hammer Type:		afety		¥				
	æ					S	ample I	informa	tion				Strat				Sa	mple [Descrip	ption	
æ	Casing Blows/ft			IOI	~	æ			nch Interv	-1	Lime	e (%)	Descrip	non	Symbol						
Depth (ft)	asing]	Number	Type	Penetration (inches)	Recovery (inches)	Depth (ft)				au	Coring Time (min/ft)	Moisture Content (%)	Depth &		S.						
á	Ű	Ż	É.	a E	<u>5</u> 2	Δ	0-6	6 - 12	12 - 18	18 - 24	υĘ	ΣŬ	Elevation(feet)		34	Class	sification System: B	urmister	-		
													1.0 Glacial	Till 887.0	1						
5																					
-																					
10																					
L																					
-																					
15													15.0								
													Botto of Explor	ation							
<u> </u>													at 15.0)π							
20																					
25																					
30		⊔ mnl	es r	not ta	ken i	n porir	na. Aur	u Ders ad	vanced	to a de	eoth c	of 15 f	eet, where a	n obser	vatio	n we	II was installe	t Soi	lithol	oav infer	red from
arks	obs	serv	/ed a	auge	r cutt	ings.	-	-									10 foot long				
Remarks	to 1	15 f	eet,	with		riser a											both above filt				
Not			•													<u>.</u>					
	2)	Wate: After	r leve corin	i readir g, NR ·	igs have = Not Re	ecorded	ide at times	s and under	condition		ictuatio	ns of gro	undwater may occ				an those present at the shallow Tube: $V = V$		easureme	ents were ma	de AC =
	1	NOR	/H = '	Weight	of Rod/	Hammer				Piston San %, And = 3		-	5poon, 55L = 3.5	aien ш Spl	in spoo	11, 31 -	= Shelby Tube; V = '	ane;	Borin	ng No.:	S-13A

Appendix 3 – Falling Head Test Data

Falling Héad Test S-1

			Patters	Patterson Crossing	-			
			Patterson and Kent, New York	id Kent, Nev	r York			
		J	Calculation of Soil Permeability from Faliing Head Test Data	ality from F.	alling Head Test	Data		
Well No.: Test Type: Date:	S-1 Falling Head 11/5/2004					Driller: Engineer: Weather:	R. Posa J. Buckley Cloudy, 40's	
Ground surface EL: Top of Casing EL: Top of Witch EL	883.0 885.0 865.0	(ft.) (ft.)	Depth to Top of Wick: Depth to Bottom of Wick:	28.0 30.0	(u.) (fi.)	Length of Wick (L): Radium of Wick (R):	2.0 0.15	(fi.) (fi.)
	0.000	(-II)	Depth to Groundwater. Groundwater Elevation:	24.0 859.0		In(L/R): R^2/2L:	2.61844 0.06380	(in.)
Elapsed Time (min.)	t2 - t1 (min.)	DTV (in.)	h1 (in.)	h2 (in.)	In(h1/h2)	k (in/min)	k (cm/sec)	k (fVday)
0 Q	20 20	0.00	312.0	306.0	0.0194	1.82E-04	6.87E-06	1.95E-02

Notes:

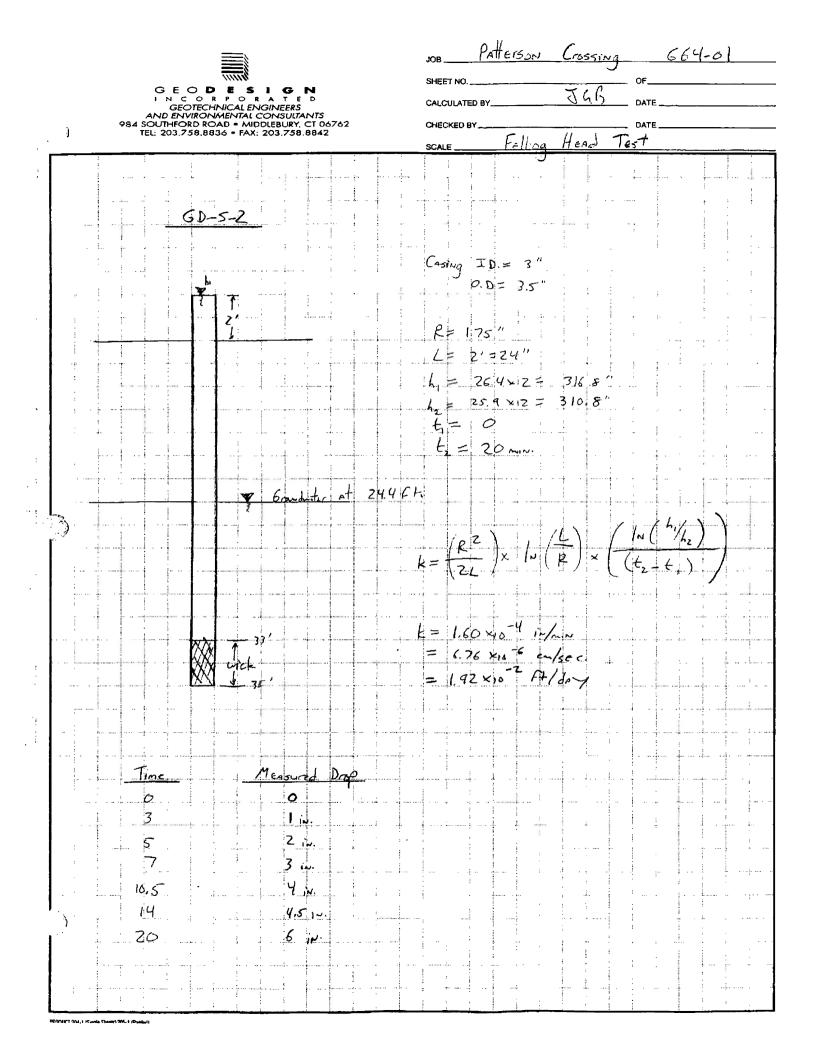
Ground surface elevations were interpolated from existing contours, and are approximate.
 Groundwater levels were measured during drilling.

Geo**Design**, Inc.

1

Patterson Crossing 664-01 ЈОВ SHEET NO JGB CALCULATED B GEOTECHNICAL ENGINEERS AND ENVIRONMENTAL CONSULTANTS SOUTHFORD ROAD • MIDDLEBURY, CT 06762 TEL: 203.758.8836 • FAX: 203.758.8842 DATE CHECKED BY Falling 11600 Test SCAL - South A.s.A Falling Hend Terts GD-5-1 Casing ID = 3" 00 = 3.5" (-ick diameter z $\left(\frac{L}{R}\right)$ k= 1.75" R = wick radius = L= wick length = 2' = 24" h = 26' = 12 = 312 " 4= (26'- 0.5') x12 = 306" ounduster at 24 Ft. E = 0 62 = 20 min k= 1.62 x10-4 in/min M wick = 6.86×10⁻⁶ cm/sec = 1.94×10⁻² C+/de Time MEASURA DRD 6 0 1 3 in Mill 14 5 Min 20 6 Min

Falling Head Test S-2


. . .) .

			Patters	Patterson Crossing				
			Patterson and Kent, New York	d Kent, Nei	w York			
		-	Calculation of Soil Permeability from Faliing Head Test Data	litty from F	aliing Head Test	Data		
Well No.: Test Type: Date:	S-2 Falling Head 11/4/2004					Driller: Engineer: Weather:	R. Posa J. Buckley Cloudy, 40's	
Ground surface EL: Top of Casing EL: Top - 4 Web FL:	893.0 895.0	(Depth to Top of Wick: Depth to Bottom of Wick:	33.0 35.0	(H.) (H.)	Length of Wick (L): Radium of Wick (R):	2.0 0.15	(ft.) (ft.)
		(III)	Depth to Groundwater: Groundwater Elevation:	24.4 868.6		In(LR): R^22L:	2.61844 0.06380	(in.)
Elapsed Time (min.)	t2 - t1 (min.)	DTW (in)	h1 (in.)	h2 (in.)	In(h1/h2)	k (in/min)	k (cm/sec)	k (ft/day)
8 o	5 O	0.0 9.0	316.8	310.8	0.0191	1,50E-04	6.76E-06	1.92E-02

Notes: 1

Ground surface elevations were interpolated from existing contours, and are approximate.
 Groundwater levels were measured during drilling.

•

)

Calculation of Soil Permeability from Falling Head Test Data Calculation of Soil Permeability from Falling Head Test Data Depth to Top of Wick: 23.5 (ft.) L Depth to Bottom of Wick: 27.0 (ft.) Rai Depth to Groundwater: 24.7 Groundwater: 24.7 Groundwater Elevation: 866.3 a20.4 0.0779 320.4 296.4 0.0779	Calc (ft.) DTV (fn.) Gr T Calc
ck: 23.5 (ft) ck: 27.0 (ft) h2 886.3 h2 (in) 296.4 (in)	
ck: 23.5 (ft) ck: 23.5 (ft) h2 866.3 (ft) 23.5 (ft) 23.5 (ft) 23.5 (ft) 23.5 (ft)	
с. 24.7 866.3 H2 (in)) 296.4	~~~
h2 (in) 296.4	

Notes: 1. Ground surface elevations were interpolated from existing contours, and are approximate. 2. Groundwater levels were measured in observation well after drilling was completed.

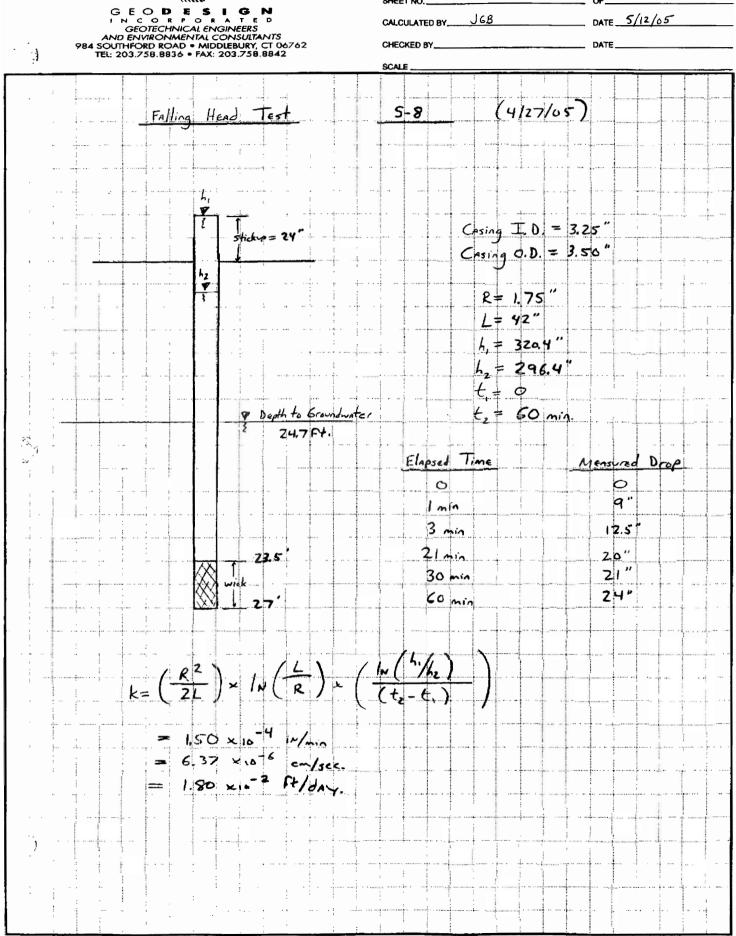
GeoDesign, Inc.

____;

Þ	Ę	s	G

JOB Patterson Crossing

664-01


JGB CALCULATED BY_

DATE 5/12/05

CHECKED BY

SHEET NO.

OF

PRODUCT 204-1 (Single Sheets) 205-1 (Paciline)

2

			Patters	Patterson Crossing				
			Patterson and Kent, New York	d Kent, Nev	w York			
		-	Calculation of Soil Permeability from Faliing Head Test Data	litty from F	alling Head Test	: Data		
Well No.: Test Type: Date:	S-9 Falling Head 4/29/2005					Driller: Engineer: Weather:	E. Delpriore J. Buckley Clear, 60's	
Ground surface El.: Top of Casing El.: Top of Wick El -	892.0 895.0 875.0	(ii) (ii) (iii)	Depth to Top of Wick: Depth to Bottam of Wick:	17.0 20.0	(J.) (J.)	Length of Wick (L): Radium of Wick (R):	3.0 0.15	(ft.) (ft.)
	0.020	(-m)	Depth to Groundwater: Groundwater Elevation:	2.2 889.8		In(L/R): R^2/2L:	3.02390 0.04253	(in.)
Elapsed Time	12-11	MTO	ų	덏	in(h1/h2)	×	×	×
(min.)	(min.)	(in.)	(in.)	(in.)		(in/min)	(cm/sec)	(ft/day)
o 8	o¥.	0.00 17.00	62.4	45.4	0.3181	9.09E-04	3.85E-05	1.09E-01

Notes:

Ground surface elevations were interpolated from existing contours, and are approximate.
 Groundwater levels were measured in observation well after drilling was completed.

GeoDesign, inc.

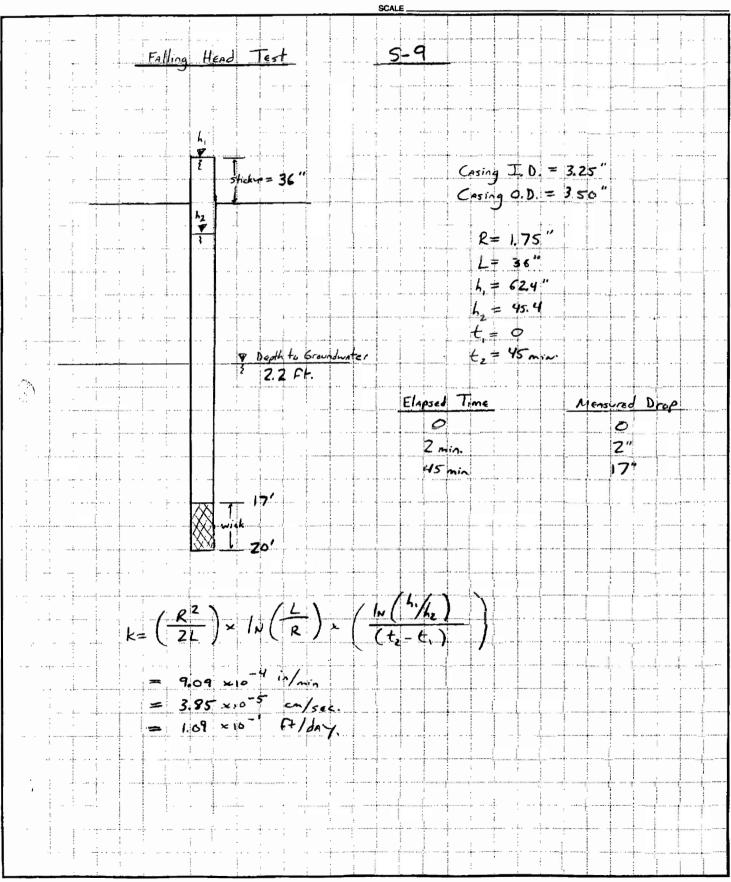
ູ)

	•
_	S.
	S
_	3
/////	٥
_	

G É O **D E S I G N** I N C O K F O R A T E D GEOTECHNICAL ENGINEERS AND ENVIRONMENTAL CONSULTANTS 984 SOUTHFORD ROAD = MIDDLEBURY, CT 06762 TEL: 203.758.8836 • FAX: 203.758.8842

108 Patterson Crossing

664-01


CALCULATED BY_____JGB

DATE 5/12/05

CHECKED BY

SHEET NO.

DATE

PRODUCT 204-1 (Single Sheets) 205-1 (Padded)

: ;) . _ ;)

1

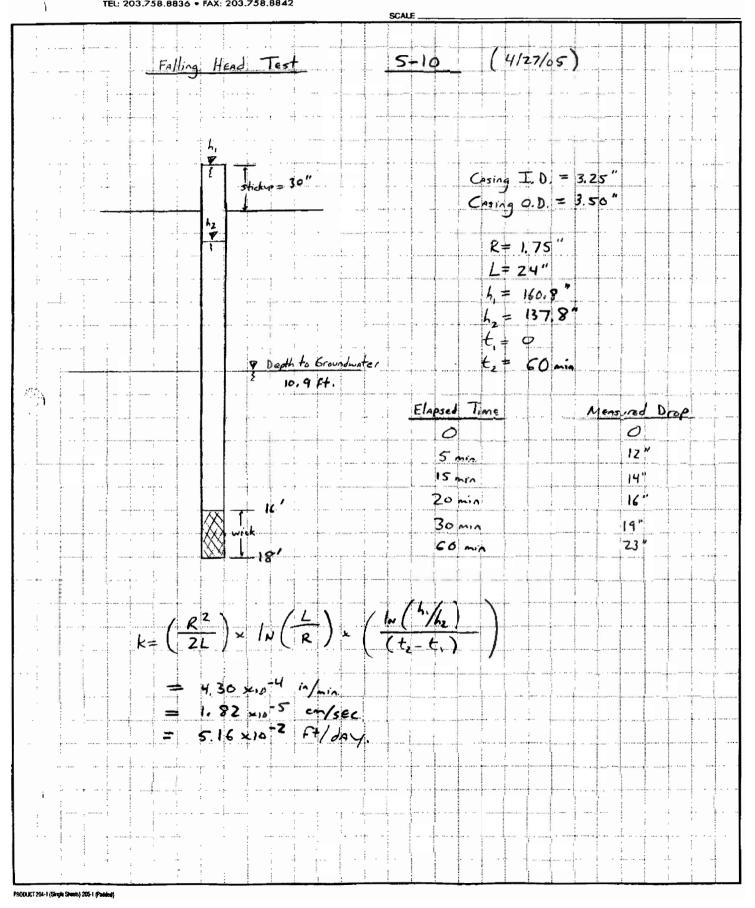
			Patters	Patterson Crossing				
			Patterson and Kent, New York	id Kent, Nev	v York			
			Calculation of Soil Permeablilty from Falling Head Test Data	lility from F	alling Head Test	Data		
Well No.: Test Type: Date:	S-10 Falling Head 4/27/2005					Driller: Engineer: Weather:	R. Posa J. Buckley Clear, 60's	
Ground surface EL: Top of Casing EL: Top of Wick EL:	881.0 883.5 865.0	(u.) (u.)	Depth to Top of Wick: Depth to Battom of Wick: Depth to Groundwater: Groundwater Elevation:	16.0 18.0 10.3 870.1	(H) (H)	Length of Wick (L): Radium of Wick (R): In(L/R): R^2/2L:	2.0 0.15 2.61844 0.06380	(ft.) (ft.) (in.)
Elapsed Time (min.)	t2 - t1 (min.)	DTW (in)	h1 (in.)	н2 (in)	In(h1/h2)	k (in/min)	k (cm/sec)	k (fVday)
0 8	0 00	0.00 23.00	160.8	137.8	0.1544	4.30E-04	1.82E-05	5.16E-02

Notes:

Ground surface elevations were interpolated from existing contours, and are approximate.
 Groundwater levels were measured in observation well after drilling was completed.

Geo**Design**, Inc.

JOB Patterson Crossing


664-01

CALCULATED BY JGB

DATE 5/12/05

CHECKED BY

SHEET NO.

_)

į

			Patters	Patterson Crossing	8			
			Patterson and Kent, N e w York	ld Kent, Nev	v York			
			Calculation of Soil Permeability from Falling Head Test Data	oility from F	alting Head Test	Data		
Well No.: Test Type: Date:	S-11 Falling Head 4/27/2005					Driller: Engineer: Weather:	R, Posa J. Buckley Clear, 60's	
Ground surface EL: Top of Casing EL: Top of Casing EL:	882.0 882.5 864.5	(j. j. j	Depth to Top of Wick: Depth to Bottom of Wick:	18.0 20.0	(H.) (H.)	Length of Wick (L): Radium of Wick (R):	2.0 0.15	(. n .) ()
		(i)	Depth to Groundwater: Groundwater Elevation:	10.2 871.8		In(L/R): R^2/2L:	2.61844 0.06380	(in.)
Elapsed Time (min.)	t2 - t1 (min.)	DTW (in.)	h1 (m)	h2 (in)	In(h1/h2)	k (in/min)	k (cm /se c)	k (fù/day)
0 8	0 8	0.0 9.00	128.4	124.4	0.0316	6.61E-05	2.80E-06	7.93E-03

Notes:

Ground surface elevations were interpolated from existing contours, and are approximate.
 Groundwater levels were measured in observation well after drilling was completed.

Geo**Design**, inc.

		JOB Patterson Crossing	664-01
		SHEET NO	OF
GEODESI Incorpora	G N T E D	CALCULATED BY JGB	DATE 5/12/05
GEOTECHNICAL ENGIN AND ENVIRONMENTAL CON 984 SOUTHFORD ROAD • MIDDLEE	SULTANTS		DATE
TEL: 203.758.8836 • FAX: 203	.758.8842	SCALE	
		S-11 (4/28/05)	<u>+</u>
- Falling Head	Test	S-11 (4/28/05)	
<i>h</i> ,			
		Casing I. D. = 3.2)« "
	stickup = 6"		
		Casing 0. D. = 3.5	
		R= 1.75 "	
i i i i i i i i i i i i i i i i i i i		L= 24"	
		h = 128.4	
		$h_2 = 124.4$	
		£=0	
	V Depth to Groundwater		
	10.2 Ft.	t2 = 50 min.	
	1912 1		
			lensured Drop
		0	0
		5 min	("
		80 min	4"
			and a second
×**	*		
	- 20'		
$k = \left(\frac{R^2}{2L}\right) \times$	+ (In (h. /he)	
$k = \left(\frac{2L}{2L}\right)^{*}$	IN(R)*[-	(+,-+,)	
$= 6 cl \times$	5 in/min		
= 2,80 x			
	loay.		
		<u>╋╺╋╸╋╍╊╍</u> ╊╍╊╼╞╺ _{╋╸╸}	
	· · · · · · · · · · · · · · · · · · ·	↓	· · · · · · · · · · · · · · · · · · ·

PRODUCT 204-1 (Single Shacts) 205-1 (Padded)

.

)

			Patters	Patterson Crossing	0			
			Patterson and Kent, N e w York	nd Kent, Nev	w York			
		2	Calculation of Soil Permeability from Falling Head Test Data	bility from F	alling Head Test	Data		
Well No.: Test Type: Date:	S-12 Falling Head 4/28/2005					Driller: Engineer: Weather:	E. Delpriore J. Buckley Clear, 60's	
Ground surface EL; Top of Casing EL: Top of Witch EL:	882.0 884.0 960.0	Û.	Depth to Top of Wick: Depth to Bottom of Wick:	23.0 25.0	(ft.) (ft.)	Length of Wick (L): Radium of Wick (R):	2.0 0.15	(ft.) (ft.)
	0.800	(I)	Depth to Groundwater: Groundwater Elevation:	16.9 865.1		In(LR): R^22L:	2.61844 0.06380	(in.)
Elapsed Time (min.)	t2 - t1 (min.)	DTW (in.)	h1 (in.)	н2 (in.)	In(h1/h2)	k (in/min)	k (cm/sec)	k (ft/day)
o 4	o 4	0.00	226.8	206.8	0.0923	3.86E-04	1.63E-05	4.63E-02

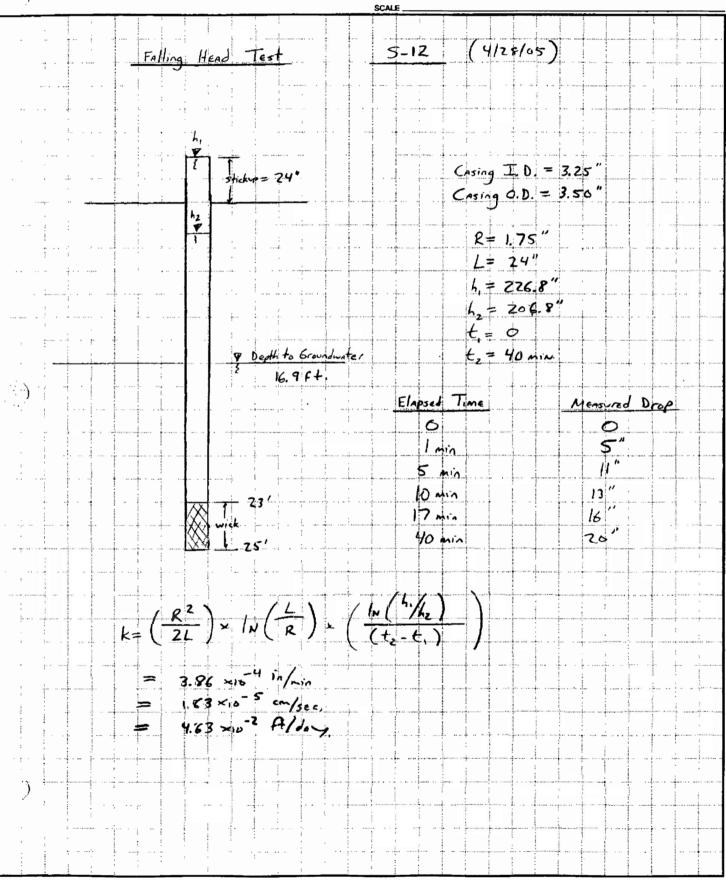
 Ground surface elevations were interpolated from existing contours, and are approximate.
 Groundwater levels were measured in observation well after drilling was completed. Notes:

Geo**Design, In**c.

			11110				
	0						
	сo					D	
	EOTEC						
AND E	NVIROI	NMEN	TAL CO	ON:	SULTA	NT:	5
SOUTHE	ORD RO	DAD .	MIDE	LEB	URY,	CT (26762
TEL: 203	.758.8	836 •	FAX: 2	203.	758	.884	12

JOB Patterson Crossing

664-01


CALCULATED BY_____JGB

DATE 5/12/05

CHECKED BY

SHEET NO.

DATE

			Patters	Patterson Crossing	_			
			Patterson and Kent, New York	d Kent, Nev	r York			
		0	Calculation of Soil Permeability from Falling Head Test Data	lity from Fa	alling Head Test	Data		
Well No.: Test Type: Date:	S-13 Falling Head 4/29/2005					Driller: Engineer: Weather:	R. Posa J. Buckley Clear, 60's	
Ground surface EL: Top of Casing EL: Top of Wick EL:	884.0 886.0 861.0 861.0	દે દે દે	Depth to Top of Wick: Depth to Bottom of Wick: Depth to Groundwater: Groundwater Elevation:	23.0 25.0 2.2 881.8	(¥)	Length of Wick (L): Radium of Wick (R): In(L/R): R^2/2L:	2.0 0.15 2.81844 0.06380	(ii) (iii)
Elapsed Time (min.)	t2 - t1 (min.)	DTW (.nj)	ريا (ii)	н2 (п)	h(h1/h2)	k (in/min)	k (cm/sec)	k (ft/day)
0 S	0 X	0.00	50.4	3 9. 4	0.2462	2.06E-03	8.71E-05	2.47E-01

Notes: 1. Ground surface elevations were interpolated from existing contours, and are approximate. 2. Groundwater levels were measured in observation well after drilling was completed.

GeoDesign, Inc.

)

100 Patterson Crossing	664-01
SHEET NO.	OF
G E O D E S I G N I N C O R P O R A T E D GEOTECHNICAL ENGINEERS CALCULATED BY JGB	DATE5/12/05
AND ENVIRONMENTAL CONSULTANTS 984 SOUTHFORD ROAD • MIDDLEBURY, CT 06762 CHECKED BY TEL: 203.758.8836 • FAX: 203.758.8842	DATE
SCALE	
Falling Head Test 5-13 (4/29/05)	
Stickup = 24° Cosing I. D. = Cosing O.D. =	
$k = 1.75''$ $L = 24^{\circ}$ $L_{1} = 56.4$	
$\begin{array}{c} h_2 = 39.4 \\ f_2 = 0 \end{array}$	
P Depth to Groundwater t2 = 20 min.	•
² 2.2 Ft	
Elapsed Time	Mensured Drop
	0
20min	
	·····
23'	
$k = \left(\frac{R^2}{2L}\right) \times I_N\left(\frac{L}{R}\right) \times \left(\frac{h_N\left(\frac{h_1}{h_2}\right)}{(t_2 - t_1)}\right)$	
$k = \left(\frac{2L}{2L}\right)^{\times} \left(\frac{R}{L}\right)^{\times} \left(\frac{L}{L}\right)^{\times} \left(\frac{L}{L}\right)^{\times}$	
$= 2.06 \times 10^{-3} in/min$	· · · · · · · · · · · · · · · · · · ·
= 8.71 ×10 5 cm/sec	
= 2.47 x10- A/day.	· · · · · · · · · · · · · · · · · · ·

PRODUCT 204-1 (Single Sheets) 255-1 (Paddad)

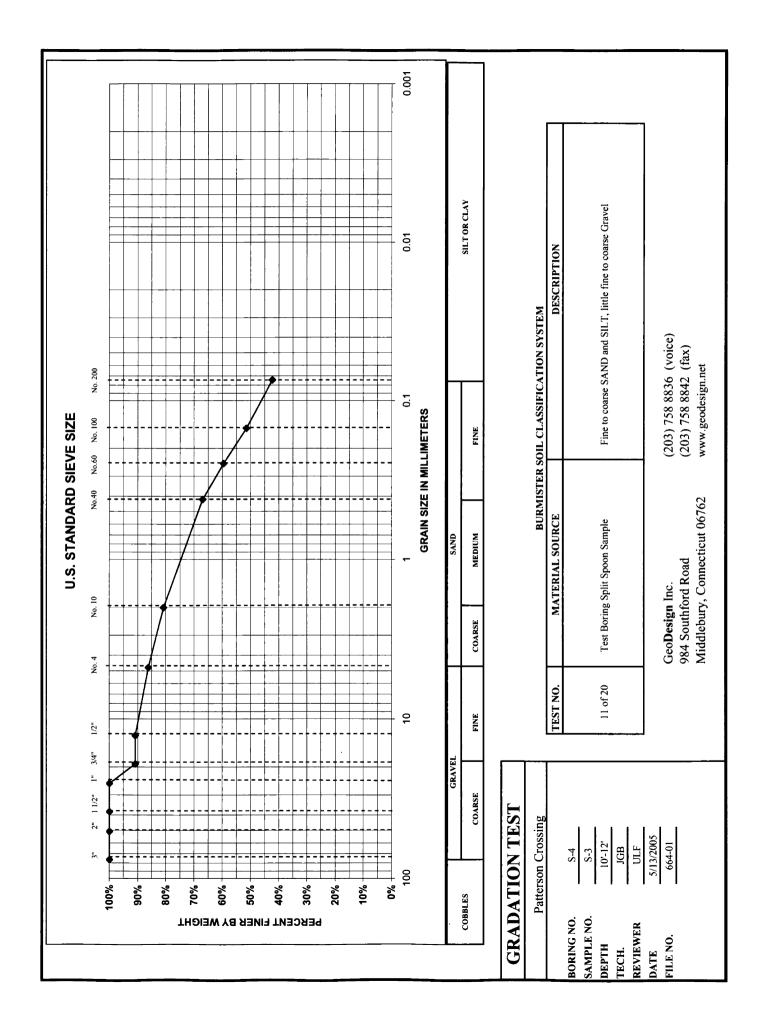
Appendix 4 – Laboratory Gradation Test Results and Kozeny-Carman Analyses Summary

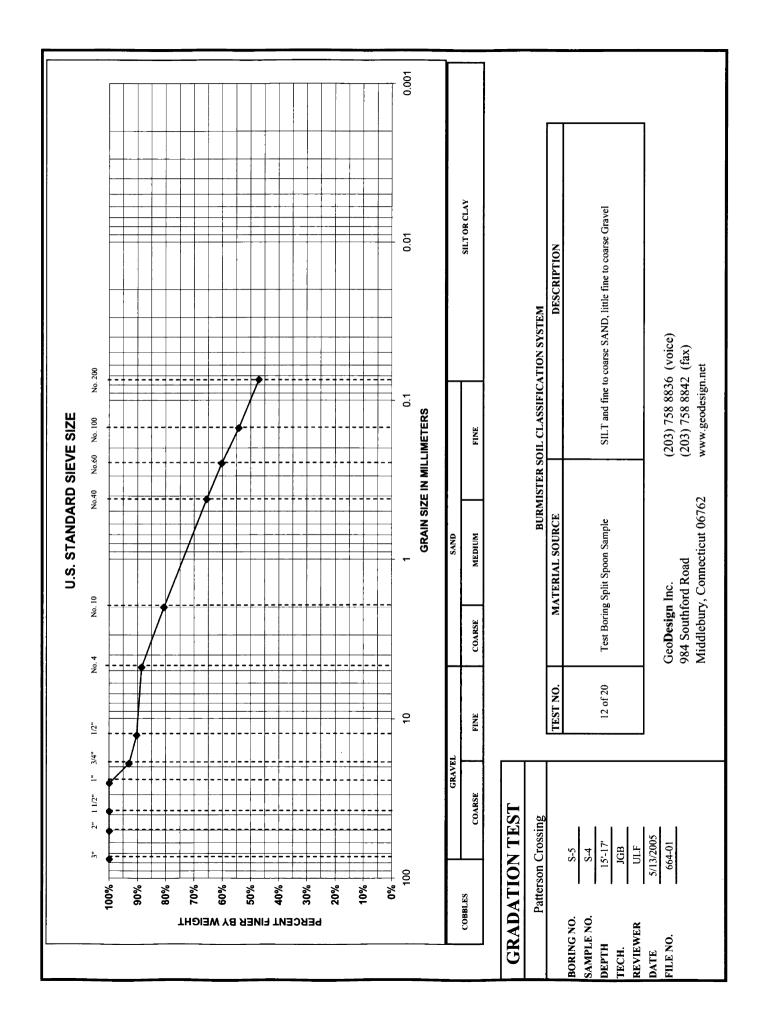
Kozeny - Carman Analyses to Estimate Coefficient of Permability

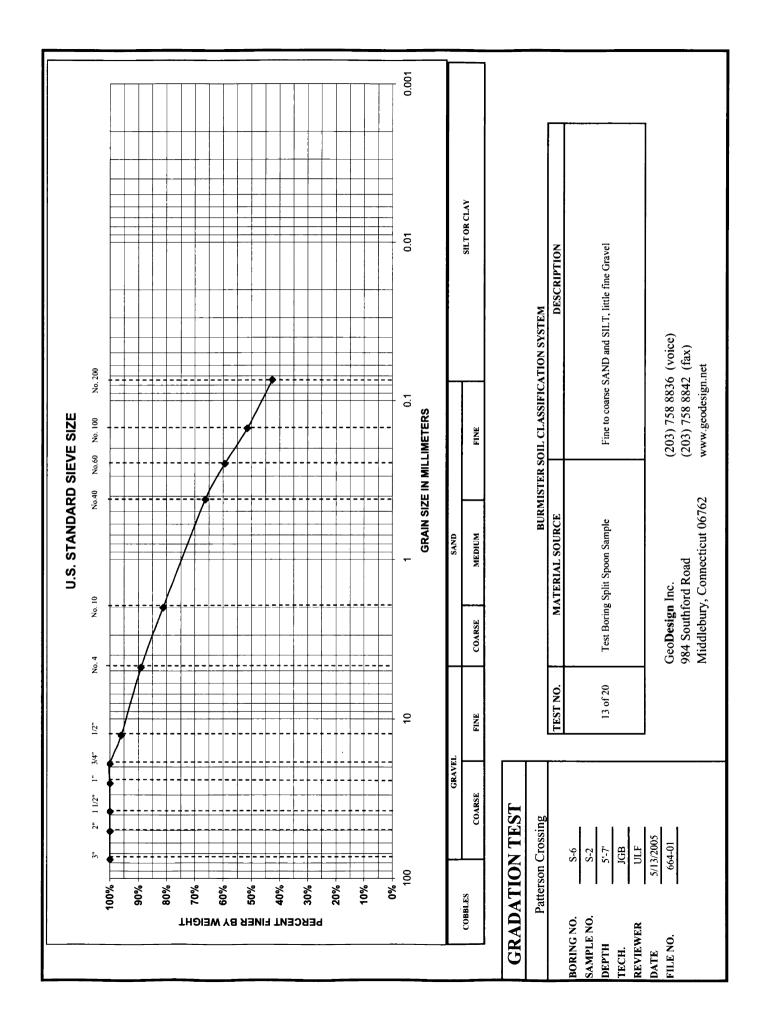
Patterson Crossing Patterson and Kent, New York

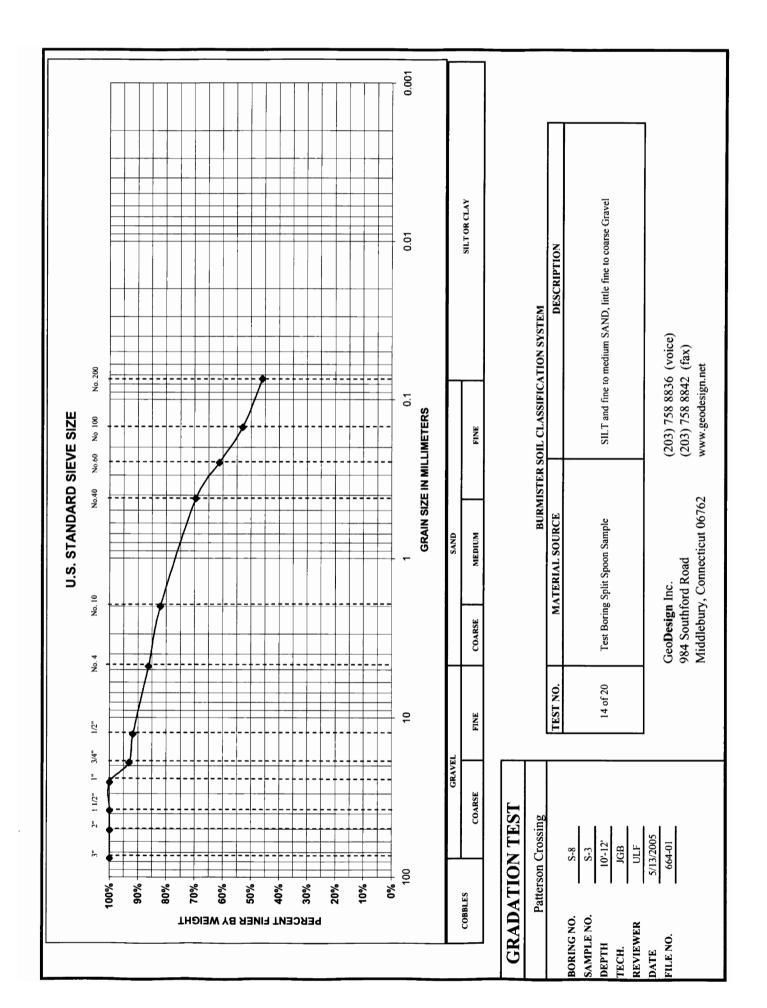
Area	Test Boring	Sample	Sample	D10	SPT "N-value	Descriptive	Relative	in-situ	in-situ	Coefficient of	Coefficient of
	No.	No.	Depth			Density	Density	void ratio	porosity	Permability	Permability
			(ft.)	(mm)	(blows / ft)		(%)	9	c	k (cm/sec)	k (ft/day)
	S-4	S-3	10'-12'	0.008	30	Dense	65	0.395	0.28	1.33E-05	3.77E-02
	S-5	S-4	15'-17'	0.0025	22	Very dense	06	0.220	0.18	2.56E-07	7.27E-04
South	S-6	S-2	5'-'7'	0.006	31	Dense	65	0.395	0.28	7.48E-06	2.12E-02
Area	S-8	S-3	10'-12'	0.005	65	Very dense	95	0.185	0.16	6.28E-07	1.78E-03
	S-9	S-2	5'-7'	0.0022	25	Medium dense	60	0.430	0.30	1.26E-06	3.59E-03
	S-9	S-3	10'-12'	0.0046	25	Medium dense	60	0.430	0.30	5.53E-06	1.57E-02
-	S-10	S-4	15'-17'	0.003	31	Dense	65	0.395	0.28	1.87E-06	5.30E-03
	S-11	S-3	10'-12'	0.002	28	Medium dense	63	0.409	0.29	9.13E-07	2.59E-03
	S-12	S-6	25'-27'	0.0018	58	Very dense	85	0.255	0.20	2.01E-07	5.70E-04
	S-13	S-6	25'-27'	0.002	22	Medium dense	40	0.570	0.36	2.22E-06	6.29E-03

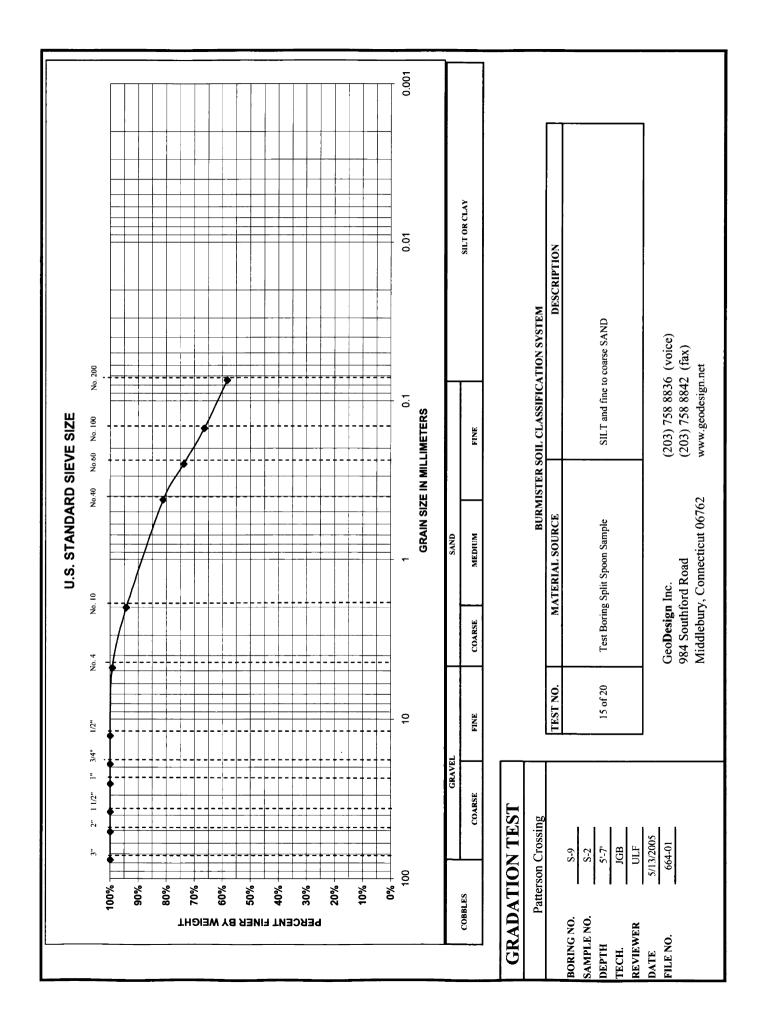
Relative Density (%)	0 to 15	15 to 35	35 to 65	65 to 85	85 to 100
Descriptive Density	Very loose	Loose	Medium Dense	Dense	Very dense
SPT (bl/ft)	0 to 4	4 to 10	10 to 30	30 to 50	50 +

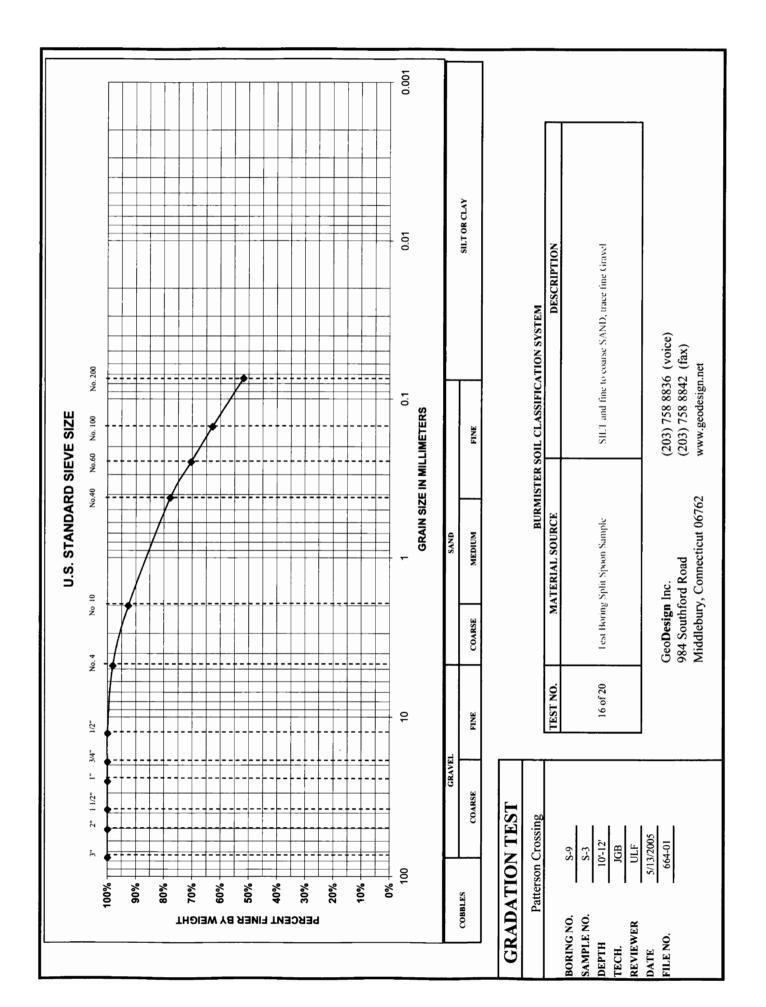

emax	0.85
emin	0.15

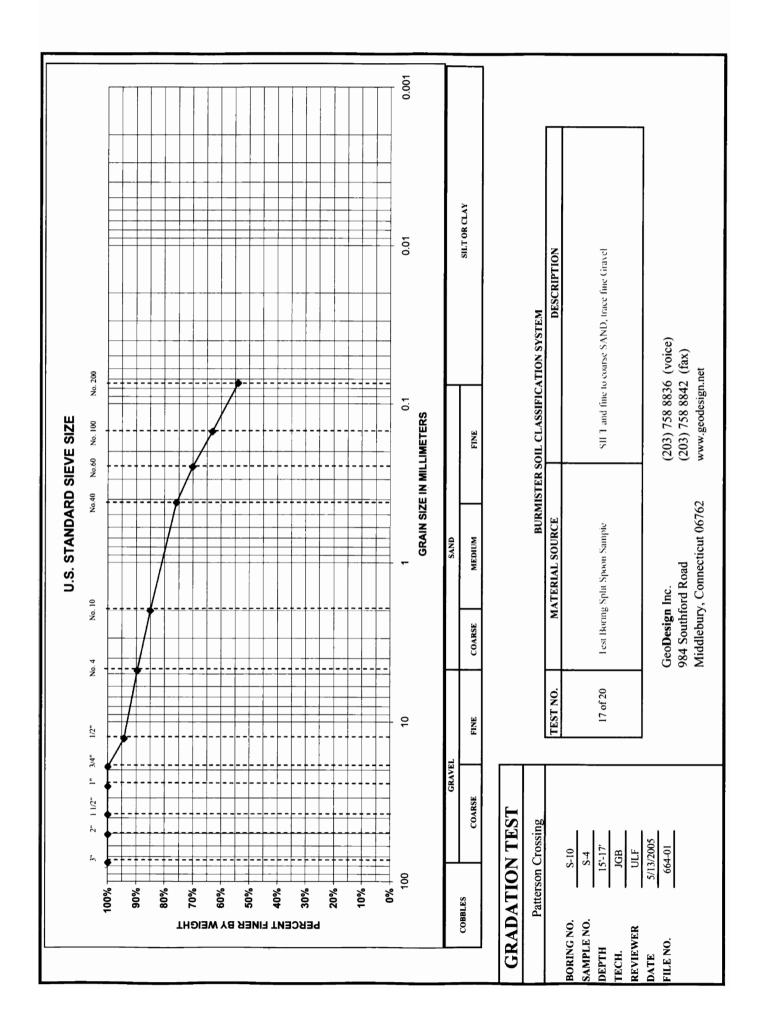

S
δí
жı
2
<u>c</u>
a
Z
a
ч ж і
Ð
~ι
<u> </u>

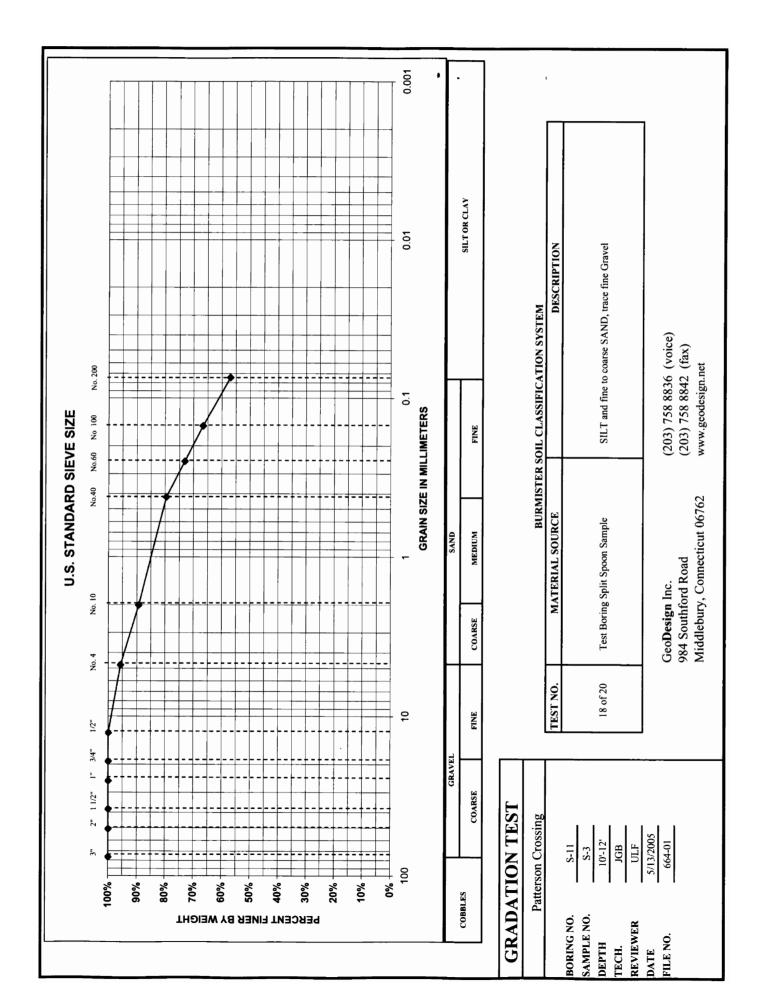

1.) Lambe & Whitman p 30 and p 287 and attached Kozeny-Carman Discussion

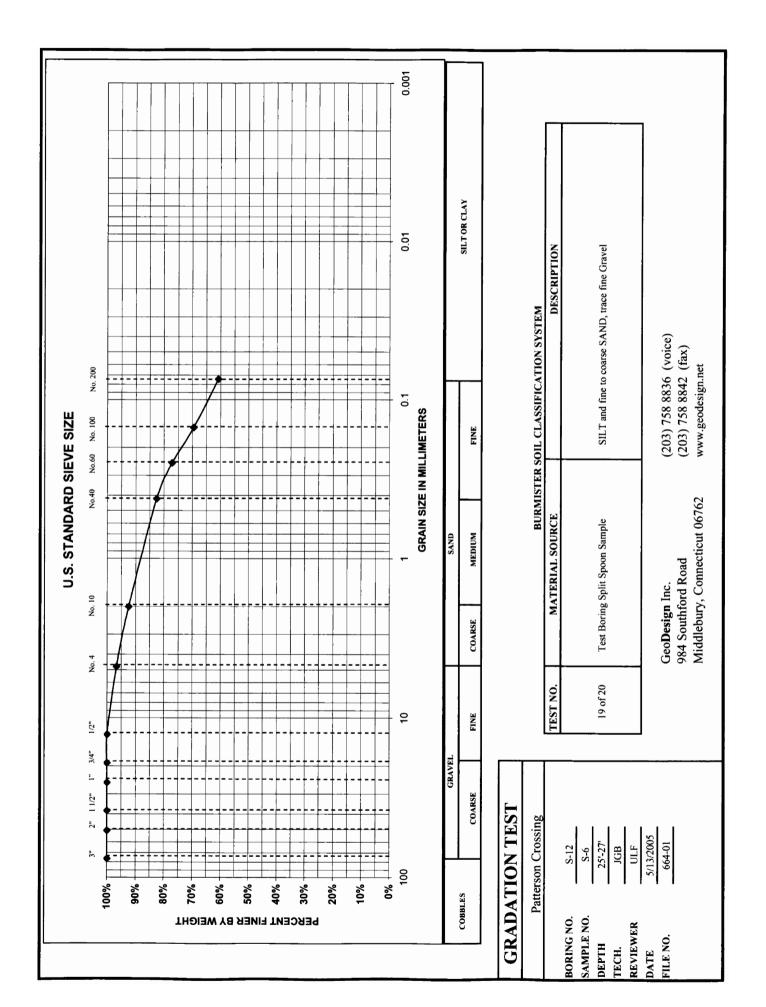

5.70E-04	3.77E-02	9.54.E-03
2.01E-07	1.33E-05	3.36.E-06
Minimum:	Maximum:	Average:
South Area		

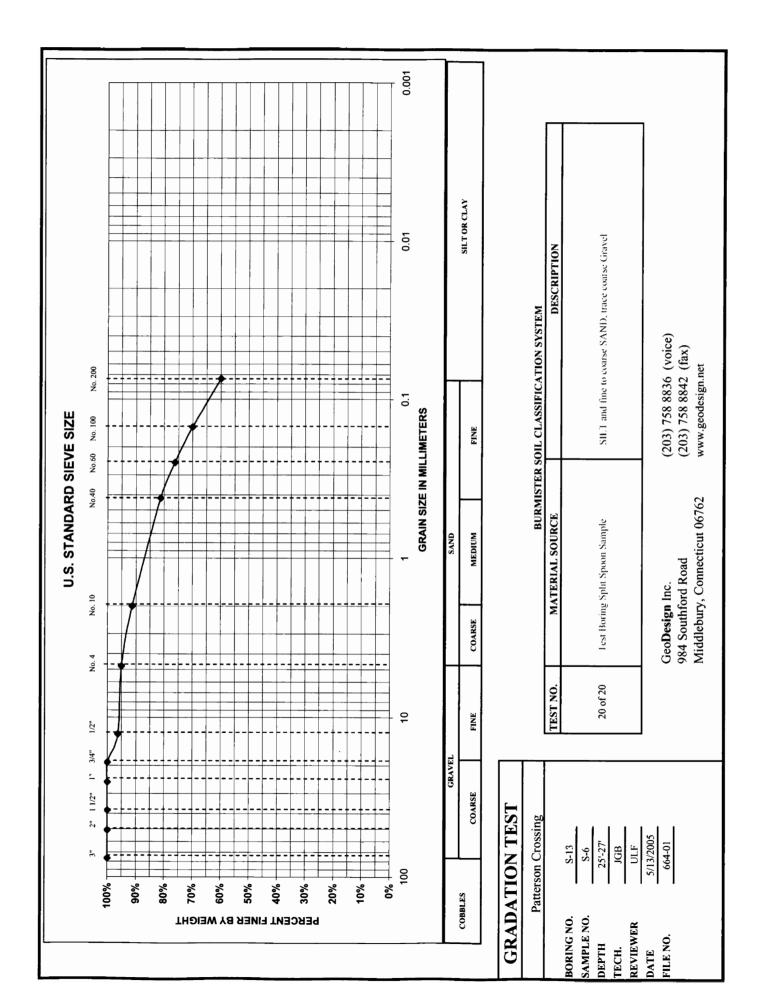

Geo**Design** Inc. File No. 664-01.1

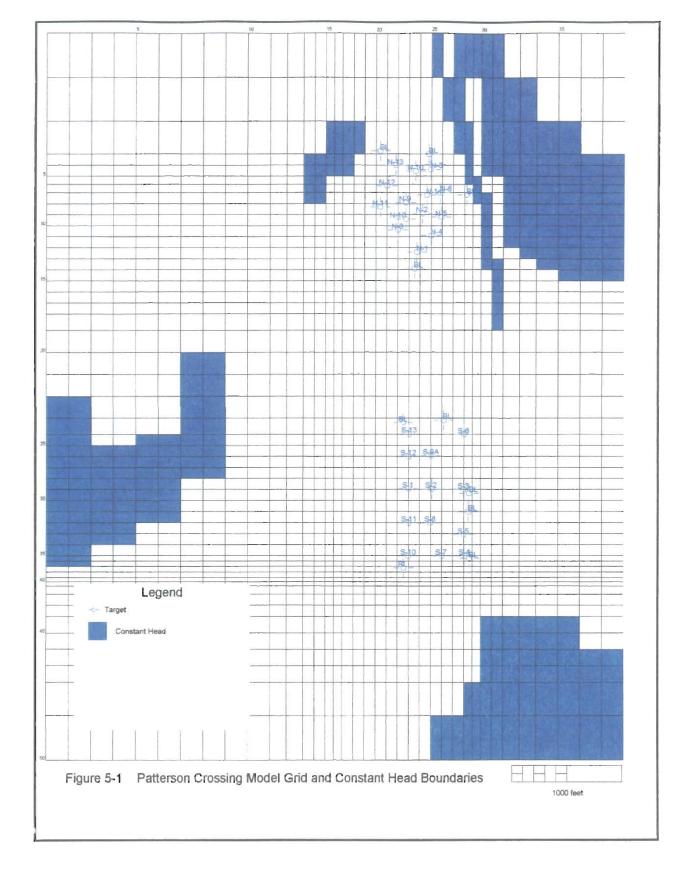


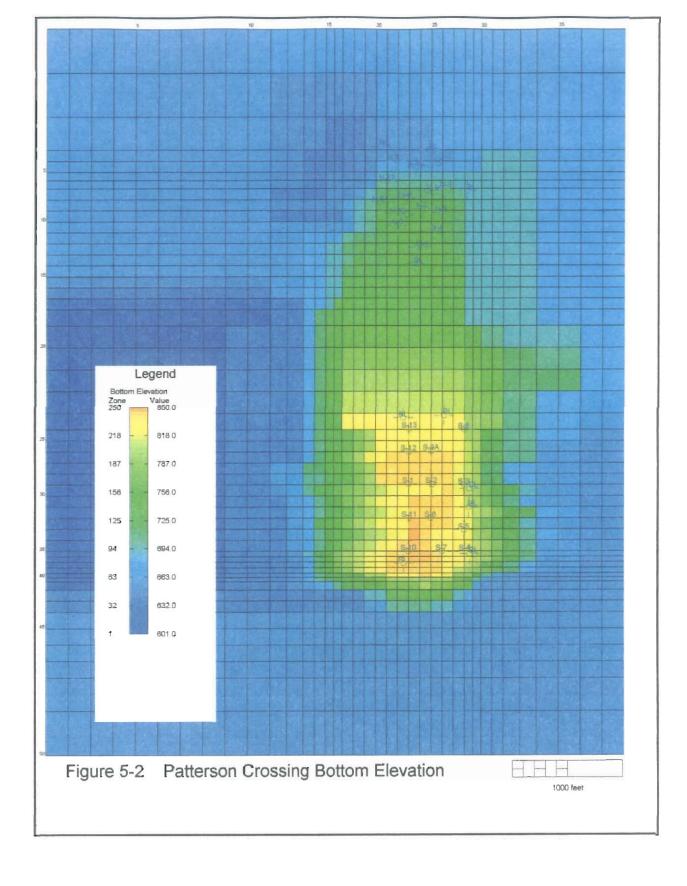


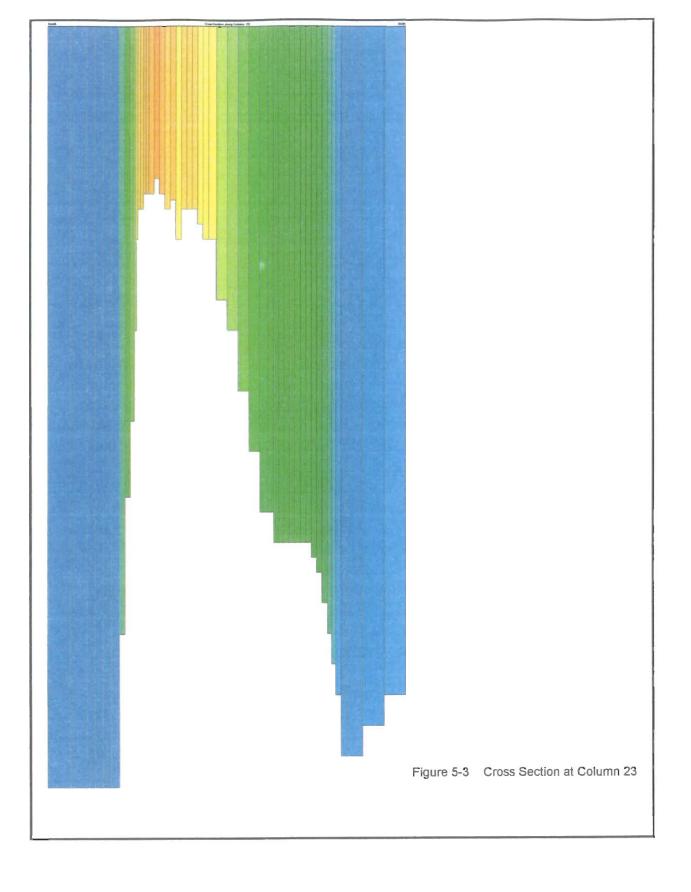


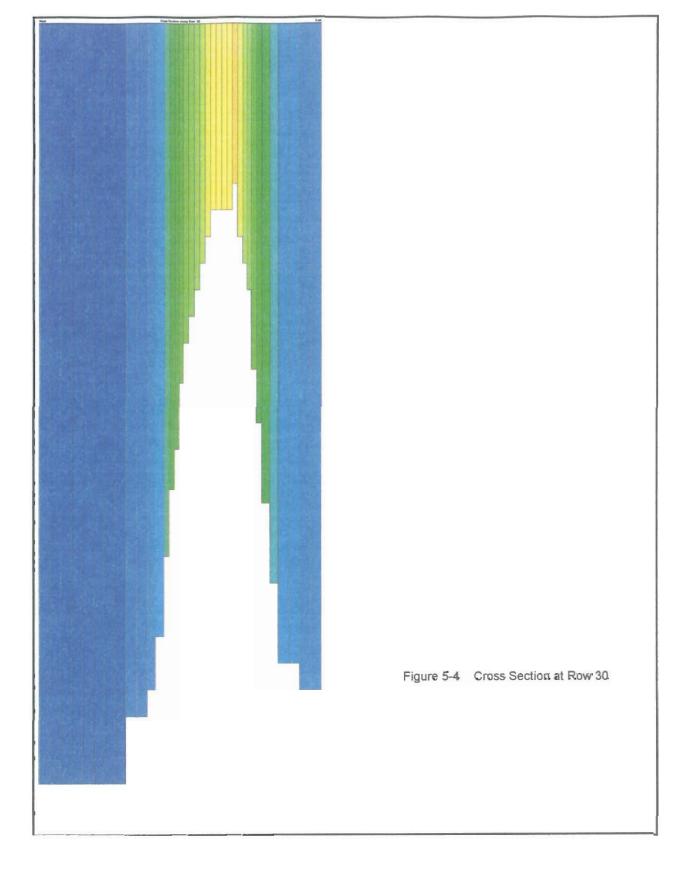


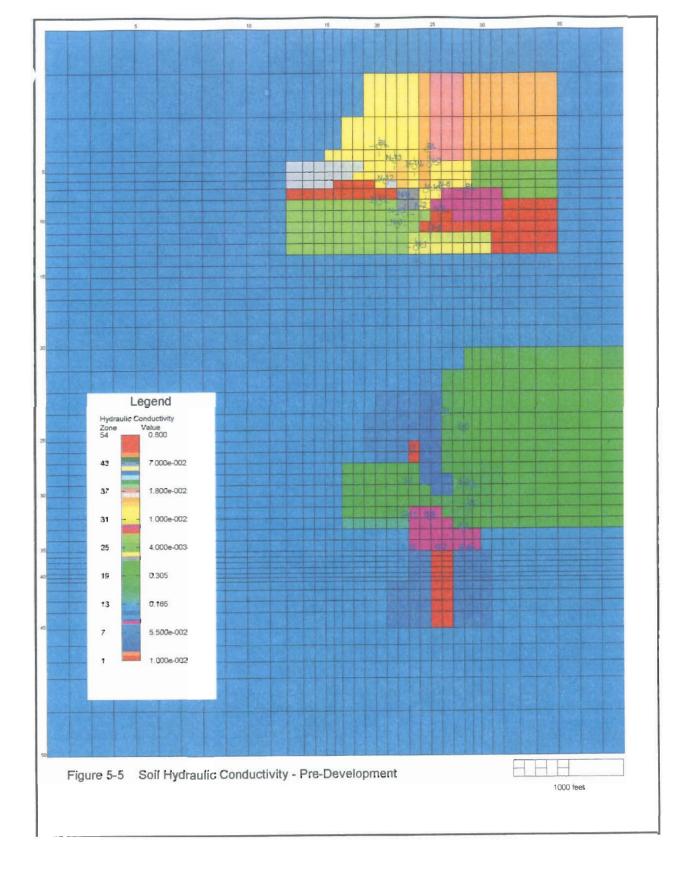


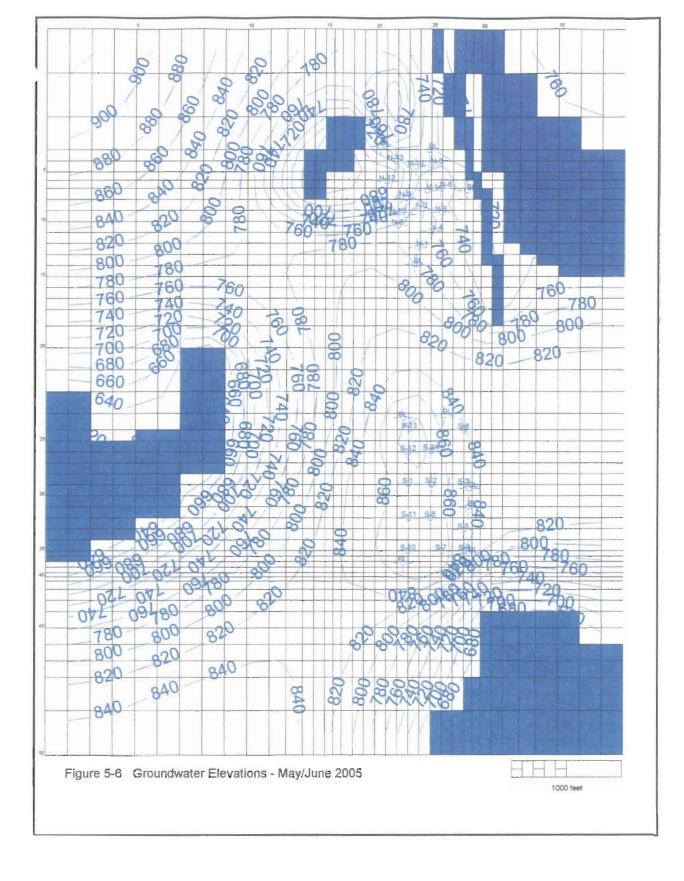


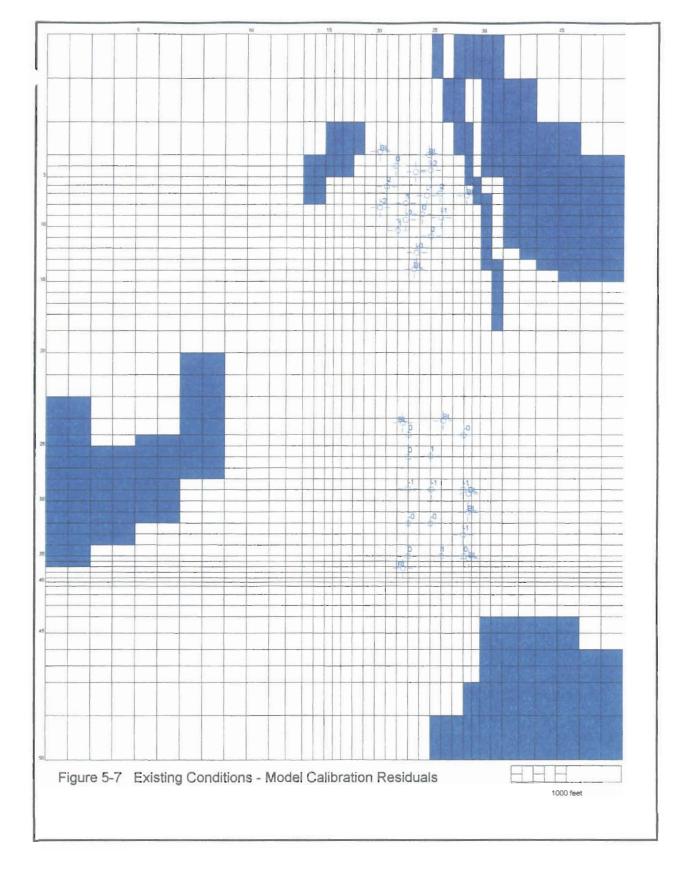


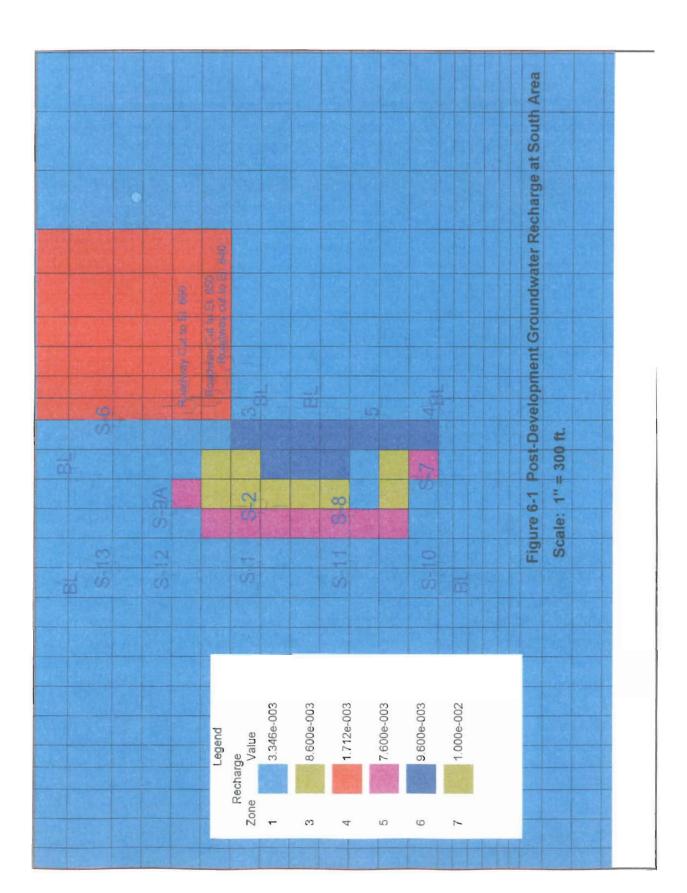


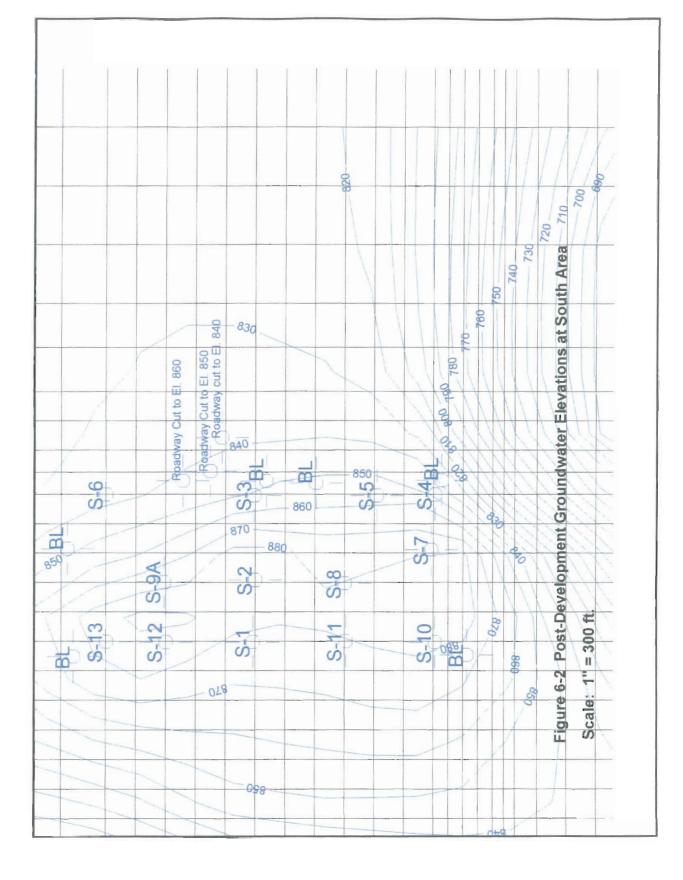

Appendix 5 – Groundwater Model Results - Existing Conditions

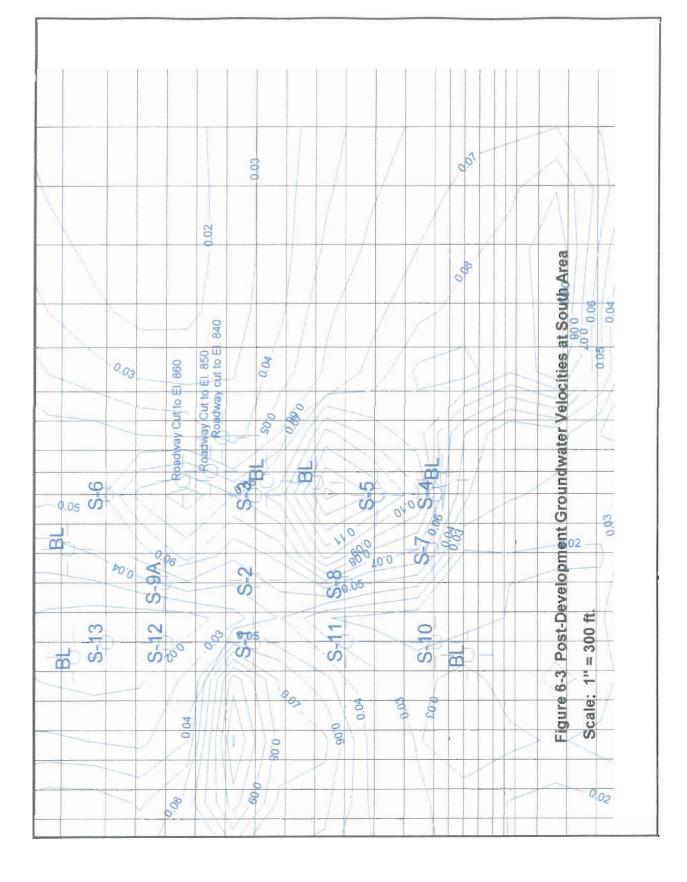

.

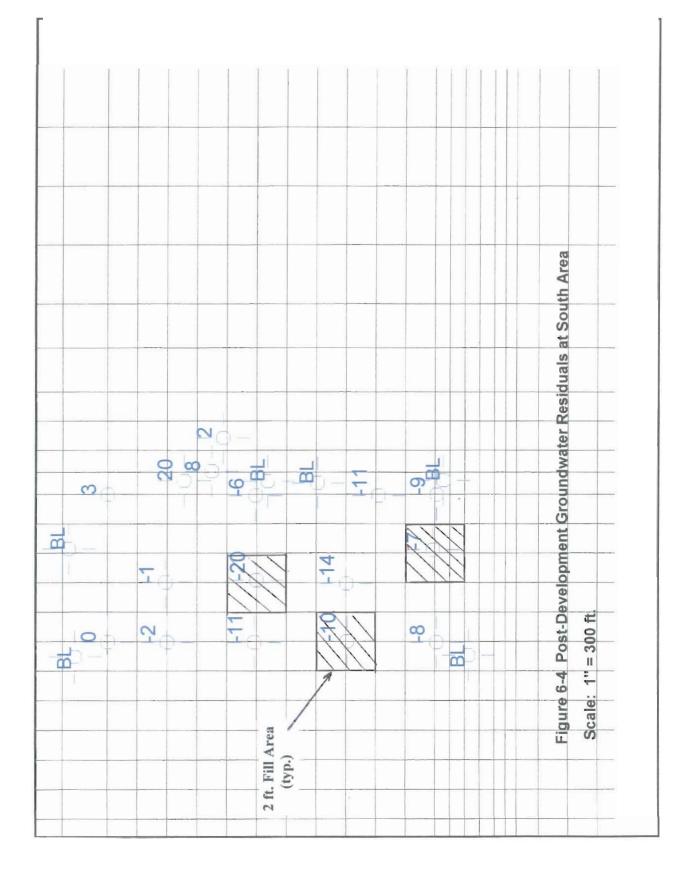












Appendix 6 – Groundwater Model Results - Proposed Conditions

Appendix 7 – Groundwater Model Results Digital Format

Appendix 8 – MODFLOW Output

U.S. GEOLOGICAL SURVEY MODULAR FINITE-DIFFERENCE GROUND-1 WATER MODEL OMODFLOW Data Set Created by Groundwater Vistas 1 LAYERS 50 ROWS 37 COLUMNS 1 STRESS PERIOD(S) IN SIMULATION MODEL TIME UNIT IS DAYS 01/0 UNITS: ELEMENT OF IUNIT: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 I/O UNIT: 11 0 0 0 0 0 0 18 19 0 0 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 OBAS1 -- BASIC MODEL PACKAGE, VERSION 1, 9/1/87 INPUT READ FROM UNIT 1 ARRAYS RHS AND BUFF WILL SHARE MEMORY. START HEAD WILL BE SAVED 16741 ELEMENTS IN X ARRAY ARE USED BY BAS 16741 ELEMENTS OF X ARRAY USED OUT OF 28247 OBCF3 -- BLOCK-CENTERED FLOW PACKAGE, VERSION 3, 7/9/92 INPUT READ FROM UNIT 11 STEADY-STATE SIMULATION CELL-BY-CELL FLOWS WILL BE RECORDED ON UNIT 50 HEAD AT CELLS THAT CONVERT TO DRY= 999.00 WETTING CAPABILITY IS NOT ACTIVE LAYER AQUIFER TYPE INTERBLOCK T _____ 0-HARMONIC 1 0 1850 ELEMENTS IN X ARRAY ARE USED BY BCF 18591 ELEMENTS OF X ARRAY USED OUT OF 28247 ORCH1 -- RECHARGE PACKAGE, VERSION 1, 9/1/87 INPUT READ FROM UNIT 18 OPTION 1 -- RECHARGE TO TOP LAYER 1850 ELEMENTS OF X ARRAY USED FOR RECHARGE 20441 ELEMENTS OF X ARRAY USED OUT OF 28247 OSIP1 -- STRONGLY IMPLICIT PROCEDURE SOLUTION PACKAGE, VERSION 1, 9/1/87 INPUT READ FROM UNIT 19 MAXIMUM OF 100 ITERATIONS ALLOWED FOR CLOSURE 5 ITERATION PARAMETERS 7805 ELEMENTS IN X ARRAY ARE USED BY SIP 28246 ELEMENTS OF X ARRAY USED OUT OF 28247 1MODFLOW Data Set Created by Groundwater Vistas 0 BOUNDARY ARRAY FOR LAYER 1 WILL BE READ ON UNIT 1 USING FORMAT: (2513) ____ OAQUIFER HEAD WILL BE SET TO 999.00 AT ALL NO-FLOW NODES (IBOUND=0). 0 INITIAL HEAD FOR LAYER 1 WILL BE READ ON UNIT 1 USING FORMAT: (10e12.4) OHEAD PRINT FORMAT IS FORMAT NUMBER 0 DRAWDOWN PRINT FORMAT IS FORMAT NUMBER 0 OHEADS WILL BE SAVED ON UNIT 30 DRAWDOWNS WILL BE SAVED ON UNIT 31 OOUTPUT CONTROL IS SPECIFIED EVERY TIME STEP

0 1.000000 0	FOR LAYER	L		co)LUMN TO	ROW P	ANISOTRO	PY =
USING FORMAT	: (10E12.4)				WILL BE			
200.00 200.00 150.00 100.00 100.00 100.00	200.00 150.00 100.00 100.00 75.000	200.00	200.00 100.00 100.00 100.00 100.00		75.000 100.00		75.000 100.00	
USING FORMAT	: (10E12.4)				WILL BE			11
$\begin{array}{r} 400.00\\75.000\\100.00\\200.00\\100.00\\100.00\\100.00\\50.000\\37.500\end{array}$	100.00 100.00 200.00 100.00 100.00 50.000 75.000	300.00 100.00 100.00 150.00 200.00 100.00 100.00 50.000 100.00 300.00	$100.00 \\ 100.00 \\ 200.00 \\ 150.00 \\ 100.00 \\ 100.00 \\ 37.500 \\ 100.00 \\ 1$		100.00		75.000 100.00 100.00 50.000 150.00	
ON UNIT 11 U	SING FORMAT:	(10e12.4)	NSMIS. ALONG				WILL BE	READ
0								
STRONGLY IMP	LICIT PROCEDU	JRE			SOLUTI	ON BY	(THE	
0			M	AXIMUN	 1 ITERATI	ONS A	ALLOWED 1	FOR
CLOSURE =	100						ELERATIO	
PARAMETER = CLOSURE =				HI	EAD CHANG	E CRI	TERION	FOR

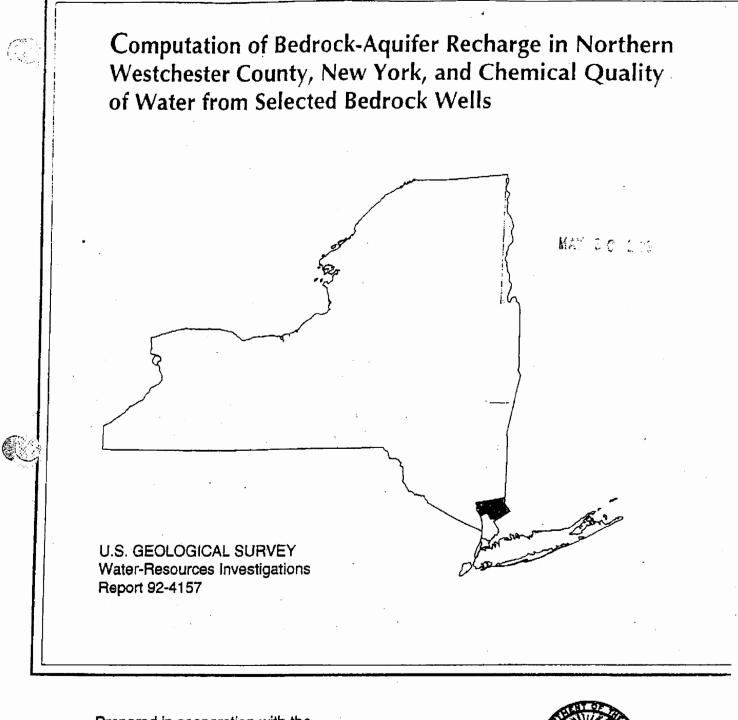
SIP HEAD CHANGE PRINTOUT INTERVAL = 5 CALCULATE ITERATION PARAMETERS FROM MODEL CALCULATED WSEED 1 STRESS PERIOD NO. 1, LENGTH = 3650000._____ NUMBER OF TIME STEPS = 1 MULTIPLIER FOR DELT = 1.200 INITIAL TIME STEP SIZE = 3650000. 0 RECHARGE = 0.3345900E-02 OAVERAGE SEED = 0.00063818MINIMUM SEED = 0.000007480 5 ITERATION PARAMETERS CALCULATED FROM AVERAGE SEED: 0.0000000E+00 0.8410590E+00 0.9747378E+00 0.9959848E+00 0.9993618E+00 0 56 ITERATIONS FOR TIME STEP 1 IN STRESS PERIOD 1 OMAXIMUM HEAD CHANGE FOR EACH ITERATION: 0 HEAD CHANGE LAYER, ROW, COL _____ -13.95 (1, 11, 12) -12.62 (1, 2, 2) -31.04 (1, 1, 1) -33.26 (1,46,18) -21.38 (1,15,9) 2.776 (1, 20, 9) 3.559 (1, 19, 10) 4.941 (1, 17, 13) 12.01 (1, 13, 12) -3.992 (1, 33, 19) -1.010 (1, 11, 12) -0.8869 (1, 27, 14) -2.239 (1, 1, 1)2.657 (1,44,15) -1.357 (1,16, 9) (1, 28, 25) 0.2464 (1, 22, 18) 0.4330 -0.2440(1, 24, 17)0.2056E-01 (1, 38, 26) -0.1634E-01 (1, 25, 16) -0.3696E-01 (1, 36, 9) 0.3231E-01 (1, 16, 19) -0.6674E-01 (1, 36, 16) 0.1107E-01 (1, 50, 18) -0.1143E-01 (1, 27, 13) 0.1401E-01 (1, 48, 14) 0.4344E-01 (1, 46, 17) -0.1733E-01 (1, 50, 13) -0.2815E-02 (1, 27, 24) -0.2244E-02 (1, 41, 23) 0.4593E-02 (1, 26, 15) 0.4017E-02 (1, 27, 20) 0.6804E-02 (1, 36, 15) -0.1167E-02 (1, 50, 18) 0.1312E-02 (1, 29, 12) -0.1485E-02 (1, 32, 21) -0.4146E-02 (1, 45, 18) 0.1789E-02 (1, 50, 13) 0.2640E-03 (1, 27, 24) 0

OHEAD/DRAWDOWN PRINTOUT FLAG = 1 TOTAL BUDGET PRINTOUT FLAG = 1 CELL-BY-CELL FLOW TERM FLAG = 1OOUTPUT FLAGS FOR ALL LAYERS ARE THE SAME: HEAD DRAWDOWN HEAD DRAWDOWN PRINTOUT PRINTOUT SAVE SAVE 0 0 1 1 " CONSTANT HEAD" BUDGET VALUES WILL BE SAVED ON UNIT 50 AT END OF TIME STEP 1, STRESS PERIOD 1 "FLOW RIGHT FACE " BUDGET VALUES WILL BE SAVED ON UNIT 50 AT END OF TIME STEP 1, STRESS PERIOD 1 "FLOW FRONT FACE " BUDGET VALUES WILL BE SAVED ON UNIT 50 AT END OF TIME STEP 1, STRESS PERIOD 1 OHEAD WILL BE SAVED ON UNIT 30 AT END OF TIME STEP 1, STRESS PERIOD 1 ODRAWDOWN WILL BE SAVED ON UNIT 31 AT END OF TIME STEP 1, STRESS PERIOD 1 0 VOLUMETRIC BUDGET FOR ENTIRE MODEL AT END OF TIME STEP 1 IN STRESS PERIOD 1 _____ -----0 CUMULATIVE VOLUMES L**3 RATES FOR THIS TIME STEP L**3/T -----IN: IN: _ _ _ _ _ _ STORAGE = 0.00000 STORAGE = 0.00000CONSTANT HEAD = 0.11038E+11CONSTANT HEAD = 3024.1 RECHARGE = 0.34578E+12RECHARGE = 94733.TOTAL IN = 0.35681E+120 TOTAL IN = 97757. OUT : 0 OUT: ----_ _ _ _ STORAGE = 0.00000 STORAGE = 0.00000 CONSTANT HEAD = 0.35681E+12 CONSTANT HEAD = 97757. RECHARGE = 0.00000 RECHARGE = 0.00000 0 TOTAL OUT = 0.35681E+12TOTAL OUT = 97757. IN - OUT = 0.55706E + 06Ω IN - OUT = 0.148440 PERCENT DISCREPANCY = 0.00 PERCENT DISCREPANCY = 0.00

0

TIME SUMMARY AT E	ND OF TIME STEP SECONDS	1 IN STRESS PERIOD 1 MINUTES HOURS
DAYS YEARS		
TIME STEP LENGTH	0.315360E+12	0.525600E+10 0.876000E+08
0.365000E+07 9993.16 STRESS PERIOD TIME	0.315360E+12	0.525600E+10 0.876000E+08
0.365000E+07 9993.16		
TOTAL SIMULATION TIME	0.315360E+12	0.525600E+10 0.876000E+08
0.365000E+07 9993.16 1		

U.S. GEOLOGICAL SURVEY MODULAR FINITE-DIFFERENCE GROUND-1 WATER MODEL OMODFLOW Data Set Created by Groundwater Vistas 1 LAYERS 50 ROWS 37 COLUMNS 1 STRESS PERIOD(S) IN SIMULATION MODEL TIME UNIT IS DAYS 01/0 UNITS: ELEMENT OF IUNIT: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 I/O UNIT: 11 0 0 0 0 0 18 19 0 0 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0BAS1 -- BASIC MODEL PACKAGE, VERSION 1, 9/1/87 INPUT READ FROM UNIT 1 ARRAYS RHS AND BUFF WILL SHARE MEMORY. START HEAD WILL BE SAVED 16741 ELEMENTS IN X ARRAY ARE USED BY BAS 16741 ELEMENTS OF X ARRAY USED OUT OF 28247 0BCF3 -- BLOCK-CENTERED FLOW PACKAGE, VERSION 3, 7/9/92 INPUT READ FROM UNIT 11 STEADY-STATE SIMULATION CELL-BY-CELL FLOWS WILL BE RECORDED ON UNIT 50 HEAD AT CELLS THAT CONVERT TO DRY= 999.00 WETTING CAPABILITY IS NOT ACTIVE LAYER AQUIFER TYPE INTERBLOCK T 1 0 0-HARMONIC 1850 ELEMENTS IN X ARRAY ARE USED BY BCF 18591 ELEMENTS OF X ARRAY USED OUT OF 28247 ORCH1 -- RECHARGE PACKAGE, VERSION 1, 9/1/87 INPUT READ FROM UNIT 18 OPTION 1 -- RECHARGE TO TOP LAYER 1850 ELEMENTS OF X ARRAY USED FOR RECHARGE 20441 ELEMENTS OF X ARRAY USED OUT OF 28247 OSIP1 -- STRONGLY IMPLICIT PROCEDURE SOLUTION PACKAGE, VERSION 1, 9/1/87 INPUT READ FROM UNIT 19 MAXIMUM OF 100 ITERATIONS ALLOWED FOR CLOSURE **5 ITERATION PARAMETERS** 7805 ELEMENTS IN X ARRAY ARE USED BY SIP 28246 ELEMENTS OF X ARRAY USED OUT OF 28247 1MODFLOW Data Set Created by Groundwater Vistas Ω BOUNDARY ARRAY FOR LAYER 1 WILL BE READ ON UNIT 1 USING FORMAT: (2513) 0AQUIFER HEAD WILL BE SET TO 999.00 AT ALL NO-FLOW NODES (IBOUND=0). 0 INITIAL HEAD FOR LAYER 1 WILL BE READ ON UNIT 1 USING FORMAT: (10e12.4) ____ OHEAD PRINT FORMAT IS FORMAT NUMBER 0 DRAWDOWN PRINT FORMAT IS FORMAT NUMBER 0 OHEADS WILL BE SAVED ON UNIT 30 DRAWDOWNS WILL BE SAVED ON UNIT 31 OOUTPUT CONTROL IS SPECIFIED EVERY TIME STEP


0 1.000000 0	FOR LAYER	1		C	OLUMN TO ROW	ANISOTROPY =
USING FORMAT	C: (10E12.4)				WILL BE READ	
200.00 200.00 150.00	200.00 200.00 150.00	200.00 200.00 100.00			200.00	200.00
100.00 100.00	100.00 100.00	100.00 100.00 75.000	100.00 100.00		100.00	100.00
		150.00			200.00	200.00
USING FORMAT	: (10E12.4)			DELC	WILL BE READ	ON UNIT 11
75.000	100.00	300.00 100.00			100.00	75.000
100.00 100.00	100.00 100.00	100.00 150.00	100.00 200.00		100.00	100.00
200.00	200.00	200.00	150.00		100.00	100.00
		100.00	100.00			
100.00 50.000	100.00 50.000		100.00 37.500		100.00	50.000
37.500	75.000	100.00	100.00		150.00	150.00
150.00	150.00	300.00	400.00			
0						
ON UNIT 11 U	SING FORMAT:		ISMIS. ALONG	ROWS	FOR LAYER 1	WILL BE READ
0						
STRONGLY IMP	LICIT PROCED	JRE			SOLUTION B	Y THE
0 CLOSURE =			M	AXIMU	M ITERATIONS	ALLOWED FOR
					ACC	ELERATION
PARAMETER =	1.0000			H	EAD CHANGE CR	ITERION FOR
CLOSURE =	0.10000E-02					

SIP HEAD CHANGE PRINTOUT INTERVAL = 5 0 CALCULATE ITERATION PARAMETERS FROM MODEL CALCULATED WSEED 1 STRESS PERIOD NO. 1. LENGTH = 3650000.-----NUMBER OF TIME STEPS = 1 MULTIPLIER FOR DELT = 1.200 INITIAL TIME STEP SIZE = 3650000. Ω RECHARGE WILL BE READ ON UNIT 18 USING FORMAT: (10e12.4) _____ _____ 0AVERAGE SEED = 0.00063868MINIMUM SEED = 0.000007480 5 ITERATION PARAMETERS CALCULATED FROM AVERAGE SEED: 0.000000E+00 0.8410278E+00 0.9747279E+00 0.9959824E+00 0.9993613E+00 0 56 ITERATIONS FOR TIME STEP 1 IN STRESS PERIOD 1 OMAXIMUM HEAD CHANGE FOR EACH ITERATION: 0 HEAD CHANGE LAYER, ROW, COL -236.4 (1, 25, 3) -123.5 (1, 5, 24) -143.7 (1, 8, 21) -162.2 (1, 38, 8) -189.6 (1, 12, 11) -28.65 (1, 1, 11) 38.27 (1, 10, 10) 46.87 (1, 15, 15) 160.0 (1, 12, 11) 57.82 (1, 44, 21) -13.89 (1, 11, 12) -12.74 (1, 2, 2) -31.39 (1, 1, 1)-37.64 (1,46,18) -22.46 (1,15,9) 3.000 (1,20,9) 3.820 (1,19,10) 3.000 (1, 19, 10) 5.191 (1, 17, 13)12.78 (1, 13, 12) -4.107 (1, 11, 10) -1.073 (1, 11, 12) -1.041 (1, 27, 13) -2.413 (1, 1, 1)2.566 (1,44,15) -1.607 (1,16, 9) 0.2715 (1, 23, 20) 0.2947 (1, 22, 18) 0.5320 (1, 24, 17) 1.070 (1, 14, 12) 0.6421 (1, 36, 15) (1, 41, 26) 0.1395 (1, 30, 11) -0.1973 (1, 1, 1) -0.1792 -0.3886 (1, 45, 19) 0.1842 (1, 50, 13) 0.2865E-01 (1, 38, 26) -0.1985E-01 (1, 25, 15) -0.4879E-01 (1, 39, 8) 0.4053E-01 (1, 15, 17) -0.8326E-01 (1, 37, 15) 0.1130E-01 (1, 50, 11) -0.1652E-01 (1, 27, 13) 0.5497E-01 (1, 46, 16) -0.2306E-01 (1, 50, 12) 0.1740E-01 (1, 48, 14) -0.3619E-02 (1, 27, 24) 0.2997E-02 (1, 25, 15) 0.6904E-02 (1, 26, 14) 0.6318E-02 (1, 27, 19) 0.1001E-01 (1, 36, 15)

-0.1602E-02 (1, 41, 26) 0.2141E-02 (1, 30, 11) -0.2148E-02 (1, 32, 20) -0.6140E-02 (1, 46, 16) 0.2763E-02 (1, 50, 12) -0.4216E-03 (1, 24, 18) 0 OHEAD/DRAWDOWN PRINTOUT FLAG = 1 TOTAL BUDGET PRINTOUT FLAG = 1 CELL-BY-CELL FLOW TERM FLAG = 1 COUTPUT FLAGS FOR ALL LAYERS ARE THE SAME: HEAD DRAWDOWN HEAD DRAWDOWN PRINTOUT PRINTOUT SAVE SAVE _ _ _ _ _ _ 0 0 1 1 11 CONSTANT HEAD" BUDGET VALUES WILL BE SAVED ON UNIT 50 AT END OF TIME STEP 1, STRESS PERIOD 1 "FLOW RIGHT FACE " BUDGET VALUES WILL BE SAVED ON UNIT 50 AT END OF TIME STEP 1, STRESS PERIOD 1 "FLOW FRONT FACE " BUDGET VALUES WILL BE SAVED ON UNIT 50 AT END OF TIME STEP 1, STRESS PERIOD 1 OHEAD WILL BE SAVED ON UNIT 30 AT END OF TIME STEP 1, STRESS PERIOD 1 ODRAWDOWN WILL BE SAVED ON UNIT 31 AT END OF TIME STEP 1, STRESS PERIOD 1 0 VOLUMETRIC BUDGET FOR ENTIRE MODEL AT END OF TIME STEP 1 IN STRESS PERIOD 1 ____ _____ 0 CUMULATIVE VOLUMES L**3 RATES FOR THIS TIME STEP L**3/T _____ -----IN: IN: ---- - -STORAGE = 0.00000 STORAGE = 0.00000 CONSTANT HEAD = 0.11227E+11CONSTANT HEAD = 3076.0 RECHARGE = 0.34308E+12RECHARGE = 93995. TOTAL IN = 0.35431E+120 TOTAL IN = 97071. 0 OUT: OUT: _ _ _ _ - - - -STORAGE =0.00000 STORAGE = 0.00000 CONSTANT HEAD = 0.35431E+12CONSTANT HEAD = 97071. RECHARGE = 0.00000 RECHARGE = 0.00000 0 TOTAL OUT = 0.35431E+12TOTAL OUT = 97071. IN - OUT = -0.26214E + 060 IN - OUT = -0.70313E - 01

0 PERCENT DISCREPANCY = PERCENT DISCREPANCY =	0.00
0	
TIME SUMMARY AT END OF TIME	
SECOND DAYS YEARS	S MINUTES HOURS
TIME STEP LENGTH 0.31536 0.365000E+07 9993.16	0E+12 0.525600E+10 0.876000E+08
	0E+12 0.525600E+10 0.876000E+08
TOTAL SIMULATION TIME 0.31536 0.365000E+07 9993.16 1	0E+12 0.525600E+10 0.876000E+08

Appendix 9 – USGS References used to Estimate Base Flow (Groundwater Recharge

Prepared in cooperation with the WESTCHESTER COUNTY WATER AUTHORITY

C

1996 II — Balington' salam and anarchand data for competition of graved sector room for adapted basistee in motion Westmather County.

(Longstan of hundre above to fig. 184-187; sol², otjeste veiliet, 10/37, kortus jory yvey; bigsfel, triffer gigines per day.)

-					Decyal water
inin 1896 and Suis Science and President	Deint aren tanife	Mentind- dist and tu ^{pt}	THE and badmak area (mi th)	Annal (infpr)	internation for and for a set for a set for a set
*14	EJTP			Sec. 6	0.71
71天。 《國	1.0	6.01 .01	2.22	25.4	.49
70			. 191 . 192	16.0	38
wT21.	ä		.43	24.3	3E
Bread Berch					
	*.17	1.14	1.65	21.4	-44
14	\$. 8 1	20	1.12	28.8	.54
	1.63	-12	1.16	24.5	.50
Cross Alver	¥.79	,20	1.46	24.2	
20. 20.	21		1.93	20.2	
áC.		.10	1.44	25.9 20.#	
84. 18 10 10	2.00	347	1.00	34	.40 .40 .51
35	2.14	-45 	j jak		.91
	1.77		1,40	11 .4	.04
Citer River halt					-i
44 ·	1.80	쇘	1.2m 225	27.5 27.6	17
6	1.00		 111	21.4	11. T
44 48 40 40	100	幕	1.62	21	n
Cases Biver west		·			174
14	1.54	.47	<i></i>	18.6	
Crater Biver seet					
84	1,00	11			
	1.100 1.20 1.20 1.20	182	6 <u>11</u>		
10 10	1.00		j.21 2.00	34.3	
	1.48	- FR		N.A	基本 本本 本本 本本 本 本
- -	9.64		1.13	14.1	
Cruide Shur sorth					
Criffe Rour swith TA SC SC	0.81	4.5 2	6.84		*
10	1.86	.35	.30	99.9	
9C			L 10	문헌	
			- 61		
THE STATE	10.00	1			jų,
- 9G-		1	L.M.		
Cristen Jever scent					
		.90	S.64	11.5	
	1. A A A A A A A A A A A A A A A A A A A	.00	1.10	36.4	1
10		201		YLS	
- <u></u>		.be	9.05 9.36	27.5	1.00
	1.86	11 11	1.365 	19819 1981	33
	14		11		388 388 311
		49		121.2	

terrer af af harin in faithe arth-provint of the proval-water floor andel

81

Filename wrlr_92_4157.djvu

Right sector and Martiflation purplet	Tirinā paras Qual ^{it} a	Stratiliad- defit areas (2217)	Till and bedruik cour (m ²)	An sunt runaf (in/yr)	Graning-was runnet: firm fill and budnets (htpathic)
Croise Bluer west	1.61	-	91:073		1.40
	1.00	 	1.60	14.4 18.3 18.3	-45 IN
- 2	1.49	20	148 140 140		10. M
	2.49	-12	1.00	173 173	141 141
			1.10	18.4 28.4	
Ones Bier Beak		- 1	· · · · ·	N	.B
			2.10		
Kinta Sinar 12A	1.00	0.00	1.35	212	0.61
	1.00	3	1.00		
11	1.94	.10			44
11F 12G 12H	1.78	<u>a</u>	1.81		- <u>A</u>
	1.8	.11	1.47	M.A.	35
語	1.30 1.00 1.34 1.34 1.34 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.1	********	1.38 1.48 1.48 1.44 1.44 1.44 1.44 1.44 1.4	27.5 27.5	ң २ २ २ २ २ २ २ २ २ २ २
Manual Ziver					
				16.4 16.4	
Manager Were sauth	1.00	-31	1.47		- 44
Parie Life					
THE REAL	1.11				<u> </u>
	2.40 3.62 5.00	-10			-
	1.1				
	1.01		84		
	1.44	41	A.	B	3
			I		
		.16 1.90	19 B B B B B B B B B B B B B B B B B B B		
					1

Initia 22.—Antomated entere and memorials of chain fir stragmentics of ground-conter recent for existent basing In northern Westellister County Assistants.

Filename wrlr_92_4157.djvu

.

Viewing /wrir_92_4157.djvu

٢

رز و بر از مرجع

Page 1 of 1

Table III.—Andrianalad (alian-and associated dotts for computation of general-water record) for activity basics he workers Winishneter County foundation).

linia nece ini Genification surfer	Tatad aris. (1987)	Blentilled- dell's aron (mi ^p)	110 and bedavity area (at/P)	Anonani Yamafi Gadye)	Circumit-senior risedi fican Mit 254 beetrack Chipatris
Citera Zimir				_	
174	8.48	6.10	4.85	55.L	¢13
172	144	.90	2,29	쾶	د ه.
		<u></u>		24.0	<u>}</u>
172	2.60		214		
197	1.00	.42	.48 1.54	84.4	.31
2362	1.42	.14	1.84	\$6.0	.54
171	1.91	32: 88.	1.49	84.4 18.4	_01 _06
175 Kanadar Street basis	7.24			ad we	
114		. 64	.in	10.5	.37
111A 140	2.50	14	146	\$0.5	1.00
360.	3-08		1.11	27.4	1
	141 #		1.00	27.8	34
	3.34	41 20	8.24	11.0	1.46
and we'll say bade					
104	1			38 14	44. **
1				11.1	
	2.05 2.25		1.44	917.8 28.7	.18
Benenen Etter beiten					
	2.05	101	3.0 L	35.5	
	1.43	Ot	1.51	37.2	
AN River been			- 17		.54
1914 2012	140 140 191 192		1.1T 1.51		
110	349	.00	-	217	
110	3 1	10 10 10	41		.20
12	1.00		1.76	87.8 87.8	.82
1955	1.01	.01 .01		17.0	
147	1.00	41		17.8	
	· · ·				
ant The inter The The The The The The The The	2.16 7.10 1.61 1.61			18.1	1.39
	4.50	38	1.77	12.0	
		2.27	1.00	34.4	1
		.01	1.01		
	1.12	20	111	11.	
	112			814 86.8 96.6 36.6	
	1.00		1.00	36.4	.48
		- 1		36.6	***
		-18	1.90	28.5	

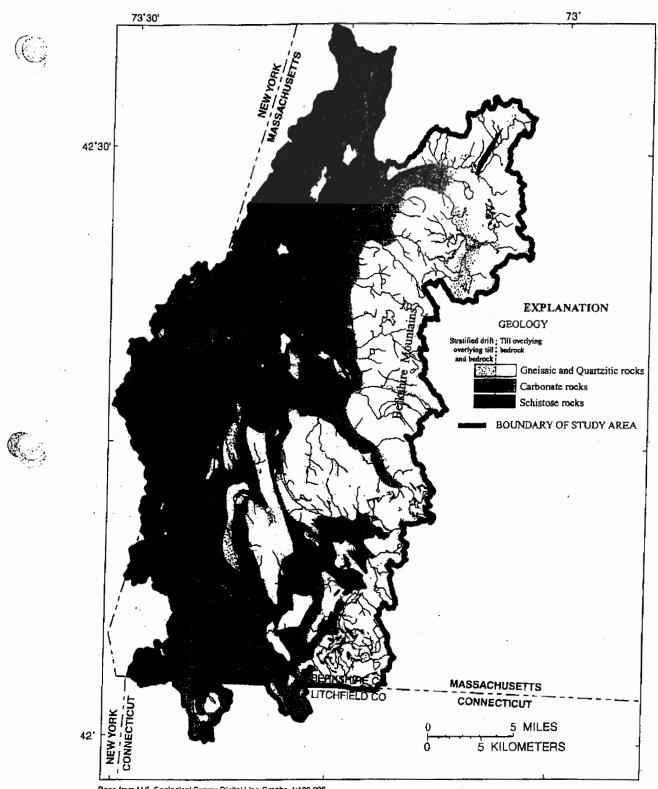
الشديد حديد سابية الجمدى بين أو ويزين والنو حل با يا متعاد أو الد يومعيني

Filename wrlr_92_4157.djvu

Streamflow, Base Flow, and Ground-Water Recharge in the Housatonic River Basin, Western Massachusetts and Parts of Eastern New York and Northwestern Connecticut

By Gardner C. Bent

Abstract


This report presents the results of a study of streamflow, base flow, and ground-water recharge in the Housatonic River Basin in western Massachusetts, eastern New York, and northwestern Connecticut. Detailed hydrologic information is needed for efficient management and optimal use of surface-water and groundwater sources and for development of future public-water supplies in the study area.

Streamflows for selected flow durations from 1 to 99 percent and the August median treamflows were estimated for 11 long-term greamflow-gaging stations in and near the study. area. Estimates of streamflow and associated standard errors were determined for selected flow durations from 50 to 99 percent and the August median streamflows for 21 low-flow partial-record stations and for selected flow durations from 1 to 99 percent and the August median streamflows for two partial-record stations and seven short-term discontinued streamflow-gaging stations. Median streamflows per square mile for the 10-, 50-, and 90-percent flow durations and the August median streamflows were 3.90, 1.01, 0.185, and 0.248 cubic feet per second per square mile. Streamflows per square mile at selected flowduration discharges between 1 and 99 percent at the 41 stations were related to basin characteristics to explain differences in streamflow characteristics. Basin characteristics included basin elevations, extent of stratified-drift deposits, land use, aspect, and underlying bedrock geology types. Most streamflow differences were positively correlated to basin elevation differences, most ely because precipitation increases with

elevation, and to stratified-drift deposits, which allow more precipitation to recharge the ground water and to discharge later than do till and bedrock deposits.

Mean base flow was computed from continuous records of daily mean discharge at 11 long-term streamflow-gaging stations in and near the study area. Mean annual base flow ranged from 13.4 to 24.5 inches per year. Minimum annual base flow ranged from 45 to 72 percent of mean annual rates at the 11 long-term stations, and the ratio of base flow to streamflow (base-flow index) ranged from 0.55 to 0.80. Base-flow durations between 1 and 99 percent were calculated from streamflow records at the 11 long-term streamflow-gaging stations. Base flow accounted for 45.5 to 85.0 percent of total annual streamflow at the 1- and 99-percent flow durations.

Ground-water-recharge rates were computed from continuous records of daily mean discharge at 11 long-term streamflow-gaging stations in and near the study area. Mean annual ground-water-recharge rates ranged from 17.5 to 22.4 inches per year at 10 of the 11 long-term stations. Mean annual ground-water-recharge rates ranged from 2 to 7 inches per year higher than base flow. Minimum annual ground-waterrecharge rates ranged from 48 to 72 percent of mean annual ground-water-recharge rates. Mean annual potential ground-water recharge was estimated from monthly climatological data collected at six climatological stations in and near the study area. Mean potential ground-water recharge ranged from about 17.9 to 28.9 inches per year, with a median value of 22.6 inches per year.

Base from U.S. Geological Survey Digital Line Graphs, 1:100,000, 1989 Universal Transverse Mercator Projection, zone 18

C.

Figure 2. Distribution of underlying bedrock types and stratified-drift and till deposits in the Housatonic River Basin, western Massachusetts and parts of eastern New York and northwestern Connecticut. (Compiled from Stone and others, 1985; Robinson and others, 1999.)

Table 14. Estimates of minimum, maximum, and mean annual streamflow and base flow, and base-flow indexes derived from the computer programs HYSEP and PART at long-term continuous and discontinued streamflow-gaging stations in and near the Housatonic River Basin, western Massachusetts and parts of eastern New York and northwestern Connecticut

[A water year is the 12-month period beginning October 1 and ending September 30. It is designated by the calendar year in which it ends. HYSEP (Sloto and Crouse, 1996); PART (Rutledge, 1998). USGS station No.: Locations shown in figure 3 and described in table 3. Base-flow index is mean annual base flow divided by mean annual streamflow. Streamflow and base flow are in inches per year. No., number; USGS, U.S. Geological Survey; --, not applicable}

USGS station No.	Period of record computed (water years)	Number of water years	Water year	Minimum	Water year	Maximum	Mean	Standard deviation	Base-flo index
			A	Annual strea	ımflow				
01180800	1964-77	14	1965	14.4	1972	44.5	30.8	8.21	
01181000	1936-95	60	1965	10.6	1 972	42.9	27.4	7.46	
01187300	193955, 195795	56	1965	11.0	1955	43.8	27.1	7.86	
01197000	1937-95	59	1965	10.0	1945	36.6	24.9	6.42	
01197300	1 964 –74	11	1965	10.6	1973	45.6	31.0	8.99	
01197500	1914-95	82	1 965	10.1	1928	46.4	25.2	6.30	
01198000	1952-71, 1995	21	1965	8.17	1952	31.4	21.0	5.64	
01198500	1950-71	22	1 9 65	7.62	1956	37.9	22.8	7.87	
01199050	1962-95	34	1965	7.31	1976	34.0	22.2	6.49	
01331400	1964-74	11	1965	12.8	1972	41.7	26.9	8.44	
01333000	1950-95	46	1965	10.1	1975	40.1	26.0	6.33	
	Annual base	flow derived	l by using H	YSEP comp	uter program	ı (local mini	mum algori	ithm)	
01180800	1964-77	14	1965	10.0	1972	26.5	18.3	4.41	0.59
01181000	1936-95	60	1965	7.14	1972	24.5	15.3	3.57	.56
01187300	1939–55, 1957–95	56	1965	6.82	1945	22.8	14.9	3.88	.55
01197000	1937-95	59	1965	7.18	1972	21.4	15.0	3.39	.60
01197300	1964-74	11	1965	6.08	1972	30.6	21.4	6.55	.69
01197500	1914-95	82	1965	5.94	1928	27.2	15.5	4.03	.61
01198000	1952-71, 1995	21	1965	6.03	1952	21.0	14.2	3.45	.68
01198500	1950-71	22	1965	4.56	1956	20.0	13.4	3.89	.59
01199050	1962-95	34	1965	5.79	1976	25.3	15.9	4.45	.72
01331400	1964-74	11 -	1965	8.20	1972	25.2	16.2	4.79	.60
01333000	1950-95	46	1965	7.21	1952	23.8	16.8	3.51	.64
		Annual bas	e flow derive	ed by using	PART compu	iter progran	1		
01180800	1964-77]4	1965	11.1	1972	28.9	20.2	4.72	0.66
01181000	1936-95	60	1965	8.27	1978	24.6	16.9	3.88	.62
01187300	1939–55, 1957–95	56	1965	7.73	1978	23.1	15.9	3.84	.59
01197000	1937-95	59	1965	7.96	1945	23.8	16.5	3.76	.66
01197300	1964-74	11	1965	7.08	1972	33.4	24.5	7.25	.79
01197500	1914-95	82	1965	7.36	1928	32.0	17.6	4.68	.70
01198000	1952-71, 1995	21	1965	6.99	1952	24.6	16.7	4.05	.80
01198500	1950-71	22	1965	5.55	1956	23.2	15.2	4.36	.67
01199050	1962-95	34	1965	6.24	1976	23.4	17.4	4.77	.79
01331400	1964-74	11	1965	9.33	1972	24.7	17.6	4.68	.65
D1333000	1950-95	46	1965	8,30	1972	29.0	19.6	4.08	.75

Base Flow 41

Appendix 10 – Limitations

LIMITATIONS

Explorations

- 1. The analyses and conclusions submitted in this report are based in part upon the data obtained from widely spaced subsurface explorations. The nature and extent of variations between these explorations may become evident with further investigation. If such variations appear, it will be necessary to reevaluate the conclusions of this report.
- 2. The stratification lines on the logs and soil profile described in the text are intended to convey trends in subsurface conditions. The boundaries between strata are approximate and idealized and have been developed by interpretations of widely spaced explorations and samples; actual soil transitions are probably more erratic. For specific information, refer to the boring logs.
- 3. Water level readings have been made in the drill holes and observation wells at times and under conditions stated on the logs. These data have been reviewed and interpretations made in the text of this report. However, it must be noted that fluctuations in the level of the groundwater and flow rates may occur due to variations in rainfall, temperature and other factors occurring since the time measurements were made.

Analyses

4. A groundwater flow model of the study area was developed during this study. Efforts have been made to check the program in general and its output for the simulations performed todate, and in our opinion, the results have been reasonable. However, it is recognized that models developed using different programs and/or different assumptions could produce different flow patterns. It should also be noted that fluctuations in the flow patterns variations will occur due to changes in rate and sequence of applications of sewage flows, seasonal precipitation and other climactic fluctuations, as well as other factors.

Review

5. In the event that any changes in the nature, design or location of the proposed subsurface disposal systems or other proposed site development features affecting groundwater recharge are planned, the conclusions and recommendations contained in this report shall not be considered valid unless the changes are reviewed and conclusions of this report modified or verified in writing by Geo**Design**, Inc. It is recommended that this firm be provided the opportunity for a general review of final design and specifications in order that earthwork and foundation recommendations may be properly interpreted and implemented in the design and specifications.

Uses of Report

6. This report has been prepared for the exclusive use of Paul Camarda and Hudson Valley Realty for specific application to the proposed subsurface disposal system at the proposed Patterson Crossing development, in Patterson and Kent, New York in accordance with generally accepted hydrogeologic practices. No other warranty, express or implied, is made.