Appendix E

Water Supply Report

Raleigh and Heiden Properties Water Supply Report

Raleigh Heiden Properties Development Heiden Road Town of Fallsburg, Sullivan County, New York

Prepared for:

Town of Fallsburg Planning Board Town of Fallsburg Town Hall 5250 Main Street South Fallsburg, New York

Prepared by:

Tim Miller Associates, Inc. 10 North Street Cold Spring, New York 10516 (845) 265-4400

with

SSEC, Inc. 4 Deer Trail Cornwall, New York 12518 (845) 534-3816

June 20, 2011

RALEIGH AND HEIDEN PROPERTIES WATER SUPPLY REPORT

Heiden Road, Town of Fallsburg, New York

TABLE OF CONTENTS

PAGE

1.0	Introduction	1
2.0	Geology and Fracture Trace	2
3.0	Well Drilling	3
4.0	Private Well Monitoring	3
5.0	Test Procedure	4
6.0	Water Quality	5
7.0	Weather During Test Period	5
8.0	Pumping Test Results	5
9.0	Conclusion	6

Figure 1	Location Map
Figure 2	Bedrock Geology
Figure 3	New York State Mapped Aquifers
Figure 4	Surficial Deposits
Figure 5	Well Location Map

Appendix A: Correspondence

- Appendix B: Fracture Trace Report
- Appendix C: Well Logs
- Appendix D: Homeowner Letters and Questionnaire
- Appendix E: Charts
- Appendix F: Analytical Reports and Table

1.0 INTRODUCTION

This report was prepared to summarize the results of a groundwater study conducted in September of 2009, associated with the proposed Raleigh and Heiden Properties development. The proposed development is located on 196.9 acres, in the Town of Fallsburg, Sullivan County, New York.

This report examines the potential for the property to supply sufficient water for the proposed residential development. Five (5) wells have been drilled and tested for use as production wells as part of a community water supply system. The subsequent testing is detailed below. The proposed project includes 236 single family homes and duplex units, however, only 181 units will be supplied by the proposed community water supply service. The remaining 55 units are located within the Town of Fallsburg public water supply district and therefore these units will be supplied water from that district.

The project water demand estimate was reviewed by the New York State Department of Health (NYSDOH) via a Pump Test Protocol letter dated June 15, 2009, attached in Appendix A. This letter explained that 181 units from the proposed development would be requiring water from an onsite community water supply system. These homes are proposed to be 4-bedroom single family homes and duplex units requiring 380 gallons per day (gpd) each. A letter dated June 30, 2009, from the NYSDOH concurred that 380 gpd would be sufficient for the single family homes and duplex units, however the NYSDOH requires that the pump test prove 1.5 times the average daily demand with the best well out of service. The average daily demand has been calculated to be 72,000 gallons per day or 50 gallons per minute (gpm). Therefore, the pump test must prove at least 75 gpm, which is 1.5 times the average daily demand, with the best well out of service.

As part of the preparation for the pumping test the existing wells were inspected, these wells were not drilled with the oversite of SSEC or TMA. SSEC deduced that Well-3 should be drilled deeper to provide greater yield. This well was drilled deeper taking the final depth from 375 feet below the ground surface to 600 feet below the ground surface. Five wells that had recently been drilled were used during the pump test; Well-1, Well-2, Well-3, Well-4 and Well-4A.

Recharge Analysis

For purposes of this analysis, recharge has been calculated assuming the only source of water is the rainfall that falls on the site itself. The primary source of groundwater is precipitation which infiltrates through the surface of the ground and percolates into the water table. The majority of rainfall is "lost" to surface water runoff, shallow subsurface flow and evapotranspiration. Depending on the physical characteristics of the recharge area, between 15 and 40 percent of the annual precipitation typically recharges the local aquifer.

Evaluation of groundwater recharge with respect to a specific project or land use is usually done by comparing the projected water demand and the ability of the local watershed to recharge the aquifer. Generally, the groundwater table in an unconfined aquifer will loosely follow the surface topography of the land. Groundwater would be expected to flow from drainage boundaries, such as ridges, toward points topographically lower in the watershed. Groundwater in storage and recharge "collected" within the natural drainage basin area would be available to replenish or recharge the aquifer. Due in part to the anisotropic (irregular) nature of the bedrock aquifer or confined aquifer, however, only a portion of total basin recharge could

transmit water to any given pumping area. For example, heavily faulted and fractured bedrock zones are capable of transmitting larger quantities of water to recharge the bedrock aquifer than are less fractured zones.

The project site wells have been drilled into a confined aquifer and the site is likely underlain by a system of subsurface minor faults and fractures. The fractures, if tapped successfully, will potentially pick up recharge from a large area, including the area beneath the Sheldrake Stream. The faults and fractures that form the valleys surrounding the project site may extend for miles and intercept additional fractures well beyond the property. Precipitation falling anywhere within this area naturally drains towards the valleys from the higher elevations. As previously noted, between 15 and 40 percent of precipitation becomes groundwater through recharge and is potentially available to wells tapping these interconnected fractures. The following table provides an estimate of the amount of water available for recharge for only the subject property assuming 25 percent rate of precipitation recharge.

Table 1 Recharge Calculations			
Acres	196.4		
Square Feet	8,555,184		
Average rainfall per year (inches) *	44.9		
Average rainfall per year (feet)	3.74		
Cubic feet of precipitation per year (on the property)	31,996,388		
Gallons of precipitation per year	239,349,604		
Amount lost to evapotranspiration and runoff (75%)	179,512,203		
Amount, in gallons, available for recharge per year	59,837,401		
Amount, in gallons, available for recharge per day	163,938		
Amount, in gallons, available for recharge per minute 11			
Source: Tim Miller Associates, Inc., * USDA Soil Survey of Sullivan County, Table 1			

This quantitative analysis of the recharge potential for the project site is only an estimate, since the recharge area for subject property could conceivably take into account an area that is considerably larger than the local watershed itself. The location, width, and the interconnection of fractures, all affect the amount of groundwater available in any given location.

Using a fairly conservative recharge rate of 25 percent (the percentage of precipitation available to recharge groundwater) results in about 163,938 gallons of recharge per day available from the site alone or 113.8 gallons per minute, which is more then the anticipated water demand of 75 gallons per minute with the best well out of service (assuming 1.5x the average daily demand which is 50 gpm). This recharge rate far exceeds the estimated project average water demand of 72,000 gallons per day.

2.0 GEOLOGY AND FRACTURE TRACE

The Fracture Trace of the Raleigh Hotel site in Fallsburg, NY, was completed using the United States Geologic Survey (USGS) digital elevation data combined with one foot orthoimagery and included in Appendix B. The project site is shown on Figure 1, Site Location Map. The data was processed in a geo-spatial software package. The database also includes existing aquifer and

geologic fault data from the New York State Museum archives.

The Fallsburg area is underlain by the Upper Devonian aged Walton formation, a unit primarily composed of shale, sandstone and conglomerate rock. The rock structure is generally flat lying to slightly inclined. Bedrock outcrops are not common except along road rock-cuts or on hill peaks, however, bedrock outcrops were observed on the property. The Walton formation, both the lower and the upper, has poor primary permeability but does have better than average secondary permeability since the rock units, other than the shale portion, contains a relatively low percentage of clay components (see Figure 2, Bedrock Geology). Therefore, wells that intercept bedrock fractures have somewhat higher yields than do average wells in other rock types. The NYS Museum data indicates that there are unconsolidated aquifer deposits (glacial outwash) in the area of the Raleigh Hotel but that there are no "aquifers" mapped in the area (see Figure 3 and 4). While drilling, an unconsolidated aquifer was not encountered.

The fracture trace map, shown in Appendix B, shows several areas that may contain significant fracturing and were considered to be suitable for well drilling. The central and southern portions of the property appear more heavily fractured and thus were the focus of the well drilling operations.

3.0 WELL DRILLING

The test wells for the Raleigh and Heiden Properties development project were drilled by Wm Fulton & Son Well Drilling under the supervision of the project developer. Initially, four (4) wells were drilled, Well-1, Well-2, Well-3 and Well-4. At a later date a fifth well was drilled (Well-4A) and Well-3 was deepened at TMA and SSECs request (see Figure 5, Well Location Map). Well logs were completed for each of the wells and can be found in Appendix C of this report. Table 2 summarizes well log information for the five water supply wells that were drilled on the property.

Table 2 Well Drilling Results						
Well Number	Depth of Well (ft bgs)	Water Bearing Fractures (ft bgs)	Static Water Level (ft bgs)	Casing Depth	Preliminary Yields	Notes
Well-1	400	305, 340	40	50	15	
Well-2	600	225, 380, 530	40	42	16	
Well-3	375/600	320	15	40	20	Well deepened
Well-4	500	325, 465	60	42	30	
Well-4A	625	145, 510	60	50	13	
<u>Notes:</u> ft bgs = feet below ground surface; Source: Wm Fulton and Son Well Drilling Logs						

Source: Wm Fulton and Son Well Drilling Logs

Well logs are supplied in Appendix C

4.0 PRIVATE WELL MONITORING

Establishment of Off-Site Well Monitoring Locations

Mr. Will Illing the Town of Fallsburg Engineer aided in suggesting off-site homeonwers who should be included in the off-site monitoring program. Letters were sent to the private well owners requesting their permission to allow us to monitor their wells during the pumping test program. Eight (8) property owners received the letter and questionnaire, which was sent on August 13, 2009. Tim Miller Associates did not receive any reply letters. Phone calls were made to these property owners and no replies were received.

The Town of Fallsburg suggested extending the request to the Fallsburg Fishing and Boating Club, which owns property located approximately 1,200 feet from the closest well on the Raleigh and Heiden property. Mr. Jim Reynolds, the contact person for the Fishing and Boating Club, circulated the well monitoring request letters and questionnaires within the community. Two homeowners responded positively; Mr. Uhl and Mr. Bisnoff. The Bisnoff property is located on Lot 52 on the eastern side of Pleasure Lake and the Uhl well is located on Lot 26 on the western side of Pleasure Lake. Both wells are located directly adjacent to the lake. The homeowners agreed to allow their wells to be monitored just as the test was beginning therefore, no pretest data was collected from these wells. A copy of the letter and survey are attached in Appendix D, as well as a list of the recipients of the mailing. The loggers placed in the off-site homeowner wells were programmed to collect data every minute for the duration of the test. The data collected from the data loggers are shown in the attached graphs in Appendix E.

5.0 TEST PROCEDURE

The Raleigh and Heiden properties development will require wells that produce a total of 72,000 gpd or 50 gpm (average daily demand). As stated above the NYSDOH required that the pump test produce 1.5 times the average daily demand with the best well out of service, which would be 75 gpm with the best well out of service.

To meet the project water demand requirements, as described above, the five test wells were fitted with test pumps suitable for the expected well yields. Each well was also fitted with a digital data logger to collect water level, water temperature and specific conductivity information. The loggers were programmed to record the datum from each well at a frequency of one reading per minute, in the test wells, and one reading per hour in the offsite and onsite monitoring wells. All of the above monitoring points and test wells were fitted with digital data loggers.

The well testing was completed as a "stress" test in which the four primary test wells (Wells 1, 2, 3, and 4A) were pumped simultaneously for 72-hours. This test was started on September 3, 2009 and the pumps were shut off on September 6, 2009. The test was a constant rate test with the pumping rates based on the observed rates during drilling. It was determined that some adjustments were needed early during the test and the pumping rates were increased. Well-4, the primary well, or "best well", was tested separately for 72 hours after a suitable recovery period of the primary test wells and the aquifer. This test was started on September 8, 2009 and the pump was shut off on September 11, 2009.

Private Well Monitoring

Two private wells, Bisnoff and Uhl wells, were monitored during the pumping test, see Figure 5 for the location of these residential lots. Both wells were located near the shore of Pleasure Lake located to the north of the Raleigh Hotel property. The monitoring results show that the Bisnoff well (lot 52) on the east shore was not impacted by the pumping test. The Uhl well, lot 26, on the west shore may have been affected by the pumping test. The data shows that there may have been as much as 7 feet of interference. Mr. Ken Uhl provided information on his well stating that the well was completed 310 feet below the ground surface and that the major water-bearing fracture is located at 210 feet below the ground surface and the yield of his well is 15 gpm. Based on observation of the data and information provided by Mr. Uhl in the questionnaire, the Uhl well appears to be a productive well and will not be adversely affected by the Raleigh wells. The Uhl and Bisnoff well charts are shown in Graphs 1 and 2 in Appendix E.

Wetland Monitoring

Two piezometer points were installed in the wetlands near Well 2 and Wells 4. Digital data loggers were installed in the piezometer points and used to monitor the wetland water levels and temperature of the water during the pumping test. The data shows that there does not appear to be a connection between the surface water, shallow groundwater and the bedrock ground water. The wetland monitoring charts are shown in Graphs 3 and 4 in Appendix E.

6.0 WATER QUALITY

A set of water quality samples was collected from the five (5) test wells, Well-1, Well-2, Well-3, Well-4 and Well-4A. The samples were transported (same day) in iced coolers to a New York State certified laboratory for analysis using the NYSDOH Subpart 5.1. In addition to the subpart 5.1 parameters, samples were also analyzed for Giardia, Cryptosporidium, and Microscopic Examination for Microorganisms (MPAs) in Well-1, Well-2, Well-4, and Well-4A. No biological materials were observed in any of the four wells tested. The results are provided in Appendix F. The Subpart 5.1 test analytical results meet all water quality standards except for Iron in Well-1, Well-2 and Well-4A as well as turbidity in Well-1 and Well-2. Within each of these wells iron and turbidity were found above the NYSDOH standard for drinking water. Sodium does not have a standard but more of a guidance value which reads; "Water containing more than 20 mg/L (or 20,000 ug/L) of sodium should not be used for drinking by people on severely restricted sodium diets. Water containing more then 270 mg/L (or 270,000 ug/L) should not be used for drinking by people on severely restricted sodium diets. Water containing more then 270 mg/L (or 270,000 ug/L) should not be used for drinking by people on moderately restricted sodium diets". All of the wells sampled for this water supply report had sodium levels above the 20,000 ug/L value. The analytical reports and a table comparing the analytical results to standards is included in Appendix F.

7.0 WEATHER DURING TEST PERIOD

The weather during the pump test is shown in Graph 10, attached in Appendix E. The graph shows weather data from the Monitcello Airport. The pumping test was conducted September 3rd through the 11th, 2009. The weather was typical for that time of year, warm with occasional rain. Rain events occurred after the pumping test was completed on the 11th with 0.16 inches of precipitation recorded. There was no rain events recorded during the period of the pump test.

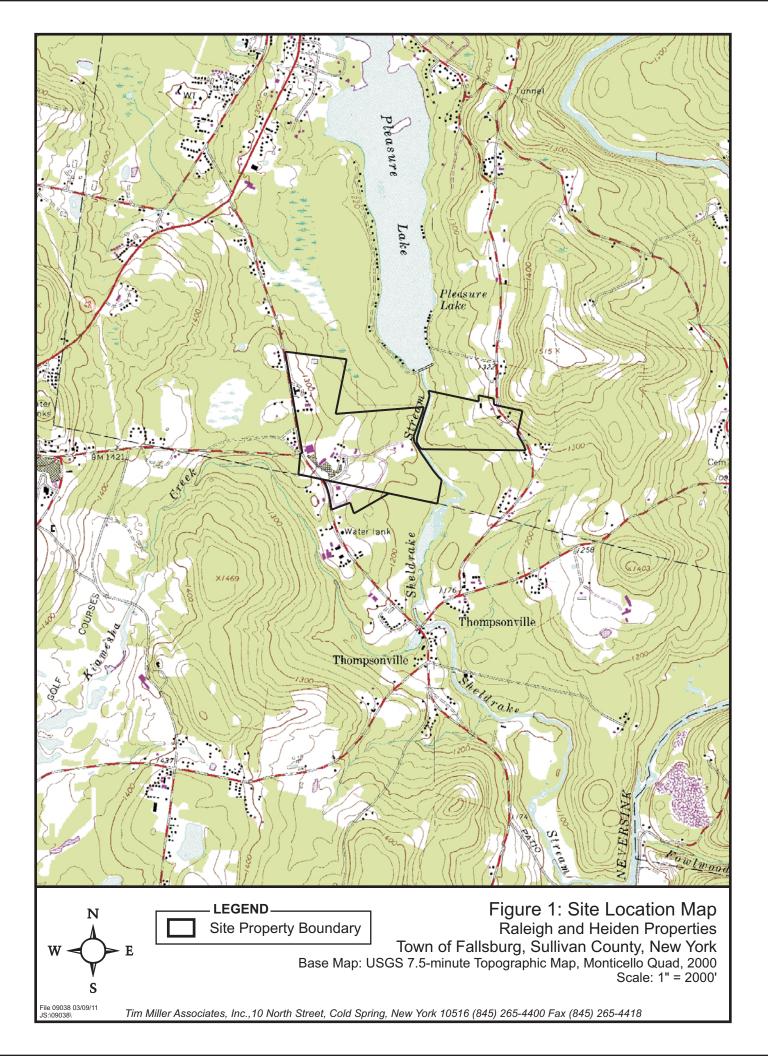
8.0 PUMPING TEST RESULTS

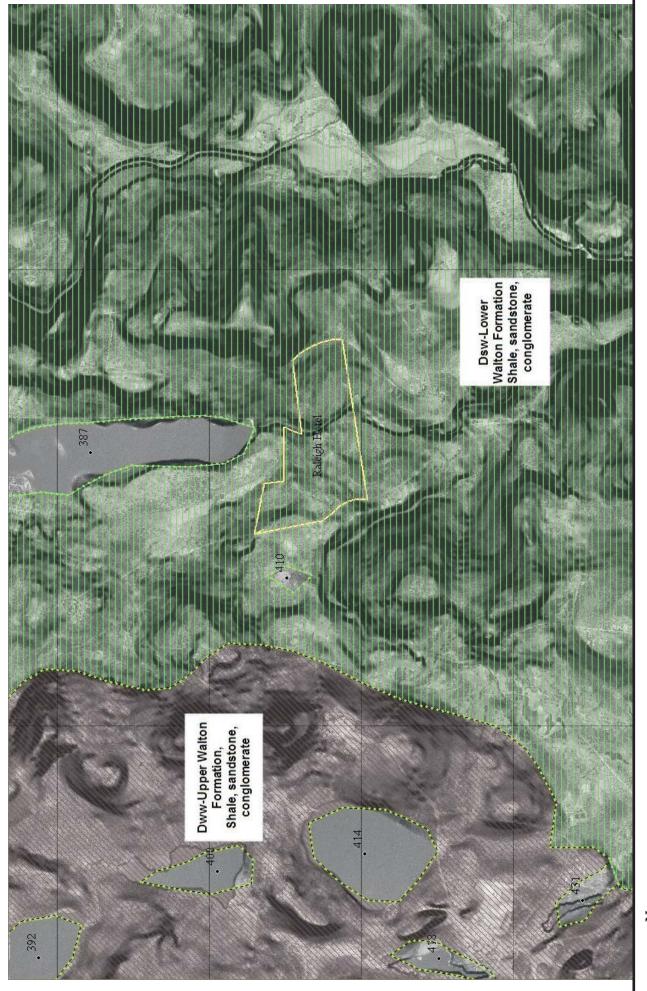
The combined primary well test produced a total of 75 gpm with the back-up well producing 35 gpm. All wells stabilized for greater than the required 6-hour period. The well graphs for the individual test data are shown in Graphs 5 through 9. The table below shows the pumping test results and stabilization of Well-1 through Well-4A.

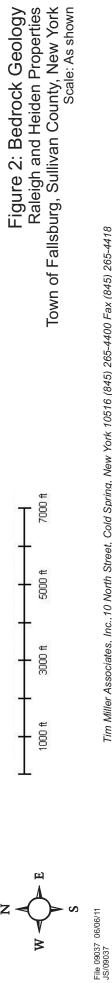
Table 3 Pumping Test Results							
Well Number	Test Rate (gpm)	Stabilized Drawdown	Stabilized Duration	Stabilization Range	Hourly Change	Saturated Well Depth	Test
1	15	85.59 to 85.45 ft.	39 hours	0.86 ft	0.22 ft/hr	360 ft	Primary
2	15	159.9 to 168.7 ft.	58.2 hours	8.8 ft	0.15 ft/hr	558 ft	Primary
3	30	109.7 to 110.5 ft.	39.3 hours	0.8 ft	0.02 ft/hr	335 ft	Primary
4	35	59.4 to 65.01 ft.	55 hours	5.6 ft	0.1 ft/hr	565 ft	Secondary (Best well)
4A	15	80.5 to 85.7 ft	42 hours	2.2 ft	0.05 ft/hr	558 ft	Primary
Source: SSEC Raleigh and Heiden Pump Test, September 3, 2009 to September 11, 2009. gpm = gallons per minute							

Groundwater Under the Influence of Surface Water Monitoring

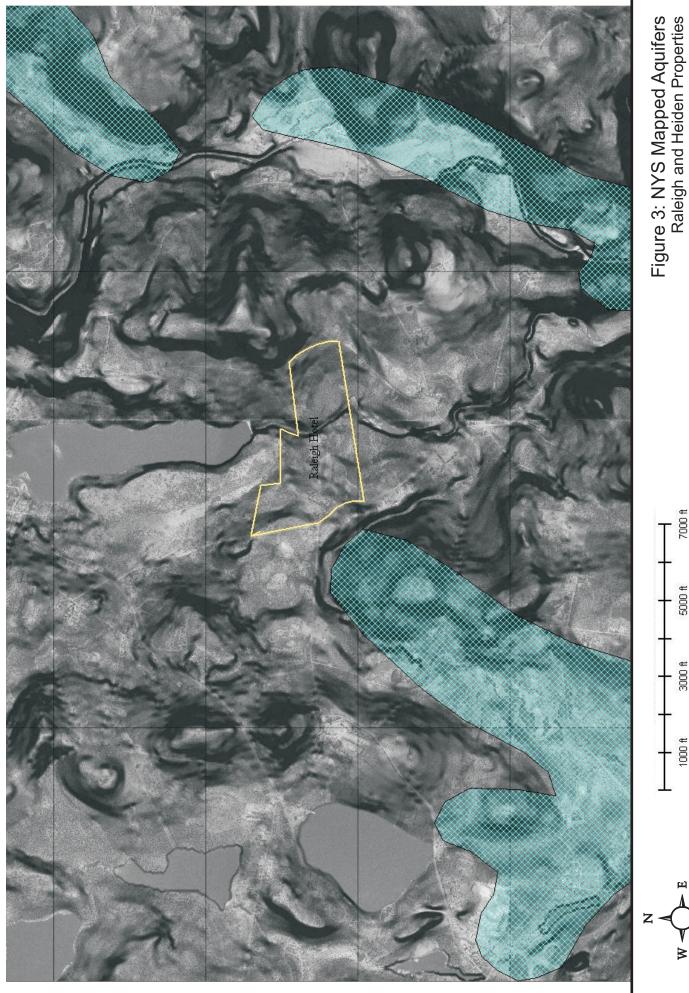
The test wells were fitted with data loggers that measured water level data, temperature and conductivity. The resulting data are plotted in Graphs 5 through 9. Two of the test wells, Well-2 and Well-4, are located within 100 feet of small wetlands. A wetland monitoring point was installed in both wetlands and fitted with data loggers to measure surface water level and temperature. The wetland points were monitored during the test, as discussed above.

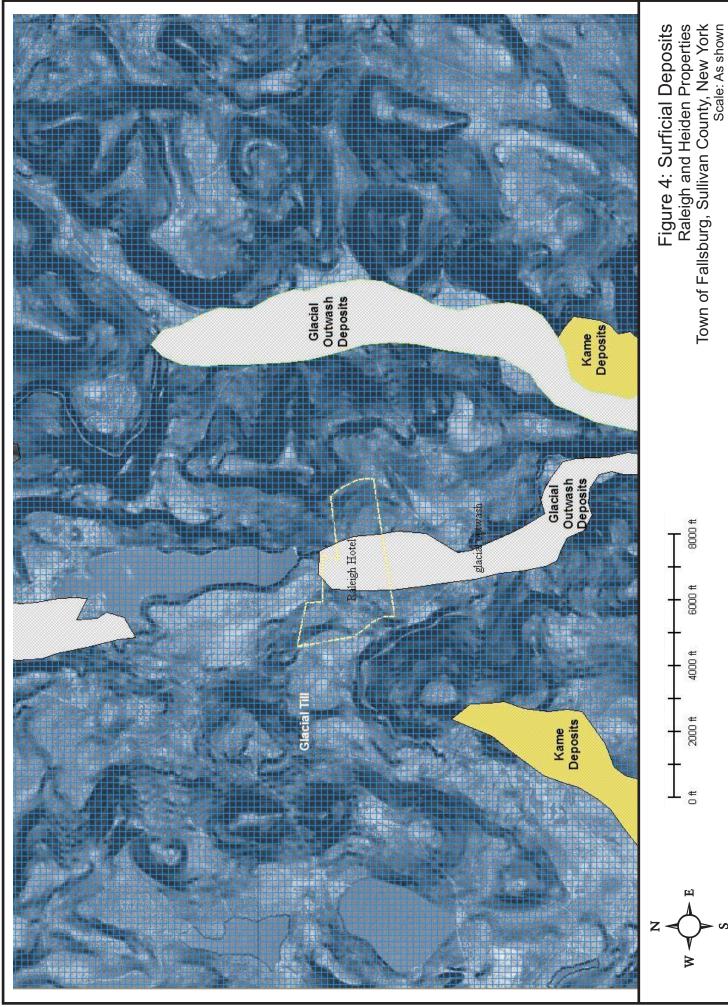

The conductivity data, as shown in Graphs 5 through 9 indicate variations in conductivity and temperature that appear to be related to the influence of the test pump and movement of water in the well but not related to possible infiltration of surface water towards the wells. Before the start of the pumping test the water in the well was relatively stagnant. Once the test starts the stagnant water is removed from the well and replaced by formation water that has had less exposure to oxygen. Additionally, the pump gives off considerable heat and raises the water temperature in the well. Therefore, the greatest changes in temperature and conductivity (conductivity levels are related to temperature) are found early in the test and at the end of the test when the pump is shut down and the residual pump heat is dispersed into still well water.


Changes related to surface water infiltration would appear as changes beyond those described above and are not evident in the charts. The wetland points appear to be affected by diurnal temperature and barometric pressure changes that also affect the shallow wetland water level. Since relatively little water is present in the wetlands, atmospheric temperature changes will cause the water temperature to change relatively quickly and thus cause increased evaporation. The wetland monitoring does not indicate that there is connection between the wetland and adjacent bedrock wells.


9.0 CONCLUSION

The production wells, Well-1 through Well 4A, completed for the Raleigh and Heiden Properties development are suitable for use as a community well system. The following conclusions can be made:


- 1. The project requires that a total of 72 gpm be proven, with the best well out of service. The pump test proved that the onsite wells can provide 75 gpm with the best well out of service.
- 2. The calculated recharge of the site is 113.8 gpm, which is larger then the anticipated 72 gpm needed from the production wells.
- 3. The subpart 5 analysis concluded that iron was found above the state standard in Well-1, Well-2, and Well-4A and turbidity was above the state standards in Well-1 and Well-2.
- 4. There was no connection observed between the test wells, Well-1 through Well-4A, with the Bisnoff Well on the east side of Pleasure Lake. There could be a connection between the Uhl well, located on the western portion of Pleasure Lake.
- 5. The a connection between the pumping test wells and the Uhl Well, north of the Raleigh and Heiden Properties site was shown in the logger information, see Graph 1. However, information provided by Mr. Ken Uhl on the questionnaire (Appendix D) shows the Uhl Well is 310 feet deep with a water-bearing fracture at approximately 210 feet below the ground surface. He also states that the well has yield of approximately 15 gpm, the drawdown in the Uhl well was approximately 7 feet from the static water level of the well (30 ft below the ground surface) leaving approximately 270 feet of water in the well. The well has sufficient water column in the well to avoid problems with water supply.
- 6. The fracture system tapped by the Raleigh and Heiden Properties wells are sufficiently productive to provide water for the proposed development. The future use of the Raleigh and Heiden Properties wells (Well-1 through Well-4A) should not adversely impact neighboring wells unless the neighboring wells are not sufficiently deep enough to sustain the additional drawdown. If water supply problems are experienced by Mr. Uhl or neighbors on the western side of Pleasure Lake, the applicant will work with the Town of Fallsburg to determine and confirm that the suspected impacts to the private wells were indeed caused by the Raleigh and Heiden Properties Development. If it is determined that the proposed development caused such impacts, the applicant will mitigate the neighbors' drinking water wells by either deepening the well or drilling a new well.


Tim Miller Associates, Inc., 10 North Street, Cold Spring, New York 10516 (845) 265-4400 Fax (845) 265-4418

Tim Miller Associates, Inc., 10 North Street, Cold Spring, New York 10516 (845) 265-4400 Fax (845) 265-4418

File 09037 06/06/11 JS/09037

Figure 3: NYS Mapped Aquifers Raleigh and Heiden Properties Town of Fallsburg, Sullivan County, New York Scale: As shown

Tim Miller Associates, Inc., 10 North Street, Cold Spring, New York 10516 (845) 265-4400 Fax (845) 265-4418

File 09037 06/06/11 JS/09037

0C

Figure 5: Well Location Map Raleigh and Heiden Properties Town of Fallsburg, Sullivan County, New York Site Plan: Glenn L. Smith Consulting Engineer, P.C., 02/10/11 Scale: As shown

Appendix A

Correspondence

TIM MILLER ASSOCIATES, INC.

10 North Street, Cold Spring, NY 10516 (845) 265-4400 265-4418 fax www.timmillerassociates.com

June 15, 2009

Mr. Will Illing Town of Fallsburg Engineer Town of Fallsburg, WWTP PO Box 830 5410 State Route 42 South Fallsburg, New York 12779

Re: Well Testing Protocol for Raleigh Hotel Property Town of Fallsburg

Dear Mr. Illing,

We are writing to provide a well testing protocol for the Raleigh Hotel project, Town of Fallsburg, New York. The protocol and testing procedures are intended to meet the requirements of the New York State Department of Conservation (NYSDEC) pumping test requirements and the New York State Department of Health (NYSDOH) requirements.

Objective

The purpose of the Raleigh Hotel pumping test is to determine if sufficient groundwater is available to the proposed project and to determine if the taking of groundwater from the project wells will have an adverse impact on neighboring private wells.

Procedure

Test Wells and Project Water Supply Demand

Test wells will be drilled for this project until the project demand water yield is developed. The water demand for this project will be based on supplying sufficient water for 181 homes, each having four (4) bedrooms, and using about 380 gallons per day (gpd). An additional 55 homes will be supplied by Town water and will not be included in the groundwater supply calculation. The planned development will require 48 gallons per minute (gpm) as one times the average daily demand. The NYSDOH requires that for a community well system, the system needs to produce the maximum daily water demand with the best well out of service. Generally, community water systems do have varying amounts of storage capacity to meet peak water demand; therefore RALHAL Corporation has proposed that the wells provide 1x the daily demand (48 gpm) with the best well out of service. Given that the project average water demand is 48 gpm, the well system needs to produce a proven 48 gpm with the best well out of service, with a 72-hour pump test.

The suitable wells developed during the drilling phase will be pumped, as a group, at 48 gpm plus the sustainable yield of the best well for a minimum of 72-hours.

Mr. Will Illing Page 2

Pumping will be terminated after at least 6-hours of stabilization (both pumping rate and drawdown stabilization) is achieved. A minimum of 24-hours of recovery (at least 97%) will be recorded. The data will be recorded using digital data loggers that will be set to record every minute during the pretest period, the test period and the recovery period.

The water pumped from the production/test wells will be diverted towards the nearest surface water body, which is not being tested for GWUDI (groundwater under the direct influence of surface water), if GWIUDI testing is needed. This will be done either directly with a hose or through silt fencing or straw bales. Flow rates from each pumping well will be measured using a combination of flow meters and periodic bucket/stopwatch readings. Water level data will be based on drawdown and referenced to a depth-to-water level from a convenient measuring point.

The production/test wells will be stagger started, about one-hour delay between starts, at a constant rate. The test will start after a minimum pf 48 hours of background data is collected from selected neighboring wells. The test will continue for a minimum of 72-hours with a minimum of 6-hours of stabilization in pumping wells. If the pumping wells do not stabilize for the minimum 6-hour period, the test will continue until the wells stabilize for the required duration or for a maximum of 120-hours. Pumping rates will be monitored using 'instant read" water meters (gpm meters) and will be checked using 5 or 20 gallon buckets and a stopwatch, depending on the flow rate.

Off-site Monitoring

All offsite properties to be monitored will be discussed with the Town of Fallsburg and will be confirmed with the Town of Fallsburg Engineer. The request for permission to monitor private wells will be in the form of a letter (sent by certified mail) detailing the test procedure and including a questionnaire for residents to complete. An example of the approval request letter is attached. The letter will request a response within 10 days of receipt of the letter. Positive respondents will be interviewed and their wells will be inspected to see if they could be monitored. If the well is suitable a data logger will be installed in the well with the assistance of the drilling/pump contractor to assure that problems, if they occur, are resolved quickly and disruption to individual water supplies is prevented.

The data loggers will be set to collect water level information from the neighboring wells for a minimum of 48 hours prior to the start of the pumping test and for a minimum period of 24 hours after the conclusion of the test. The sampling interval will be 60 minutes between readings.

On-site Monitoring

Data loggers will be installed in the proposed production test wells, and in the two (2) Raleigh Hotel Wells not being utilized for water supply, as shown in Figure 1.

In addition, data-loggers will be placed in any water bodies within 500 feet of the production wells, as mandated by the NYSDEC pump test requirements. These water bodies will then be monitored for water level fluctuations. Piezometer screens will be installed a minimum of two feet below the streambed or wetland soil surface. Periodic water level readings (not less than two per day) will be taken prior to, during, and following the pumping test. Measurements will be taken on the outside of each piezometer to the

Mr. Will Illing Page 3

standing water level in the stream or wetland, and inside each piezometer to the level of the shallow groundwater to identify upward or downward gradient conditions in these water bodies. A log of weather conditions will be maintained during the test.

Water Quality

A set of water quality samples will be collected from each test well just before the test is shut down. The samples will be transported the same day in iced coolers to a New York State certified laboratory for analysis using the parameters specified by the NYSDOH – Monticello District Office (NYSDOH Full Subpart 5 parameters).

Report

The data collected during the pumping test, outlined above, will be summarized in a technical report. The data will be presented in tabular and graphic form. The data from the test wells will be presented on individual charts that include drawdown and pumping rate data plotted on a suitable time scale. The neighboring well data will be presented on individual graphs, which will also include the pumping period. The common format will allow direct comparison and analysis of the possible interference affects. All water level data will be presented in both "0" (drawdown) form and in depth to water format. The report will also include a recharge analysis suitable for the Town of Fallsburg area.

Please contact me at the number above should you have any questions. We appreciate your assistance with the well testing plan and look forward to hearing from you regarding any comments or you agreement with this plan.

Sincerely,

ORIGINAL SIGNED

Maureen S. Fisher Environmental Scientist Tim Miller Associates, Inc.

cc: Mr. Sergio Smiriglio – SSEC Mr. Glen Illing – NYSDOH, Monticello District Office Mr. Mendel Lerner

STATE OF NEW YORK DEPARTMENT OF HEALTH

Monticello District Office 50 North Street Suite 2 Monticello, NY 12701-1711 (845)-794-2045 Fax (845)-794-3165

Richard F. Daines, M.D. *Commissioner*

Wendy Saunders Chief of Staff

June 30, 2009

Maureen S. Fisher Environmental Scientist Tim Miller Associates, Inc. 10 North St. Cold Spring, NY 10516

> Re: RAC HAL Corporation Property Water Supply Wells (T) Fallsburg – SBL 60-1-56

Dear Ms. Fisher,

I am writing to follow up on our telephone conversation last week regarding the pump test protocol addressed to the Town of Fallsburg, dated June 15, 2009 at the above referenced facility.

Please be advised that the New York State Department of Health will not accept a maximum day demand calculation based on a 1.0 multiplier of the average daily demand. This office requires that the water supply maximum day demand calculation be based on a minimum of one and one half (1.5) times the average daily demand. You are reminded that our review for this project will be in accordance with "Recommended Standards for Waterworks (2007 Edition)" and the total developed groundwater source capacity shall equal or exceed the maximum day demand with the largest producing well out of service.

If you have any questions regarding this matter, please contact me at (845) 794-2045.

Sincerely,

Glenn D. Illing, P.E. Senior Sanitary Engineer

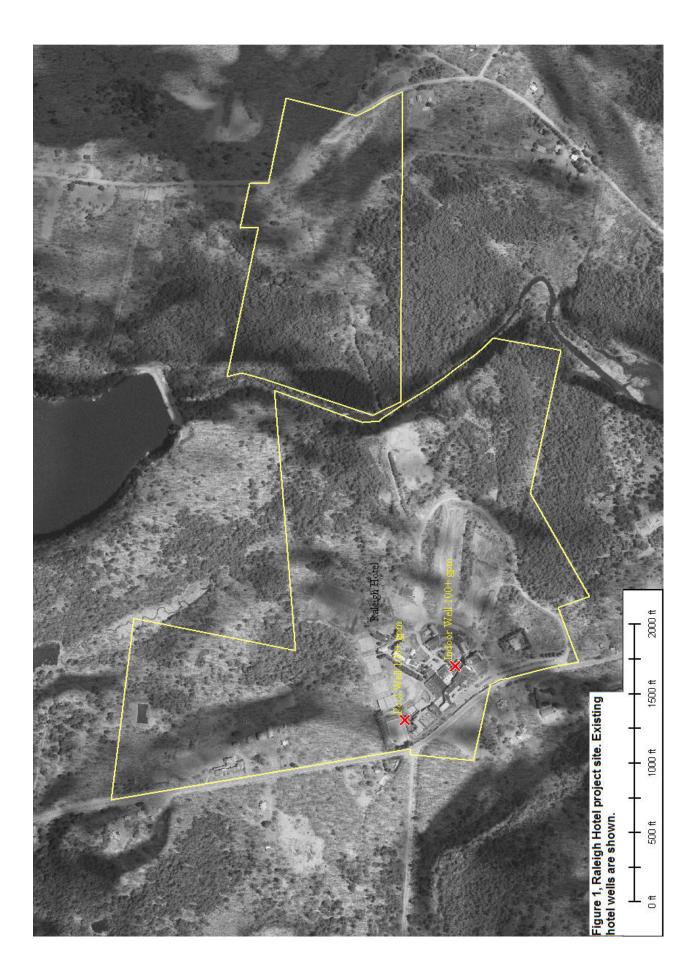
GDI:ce

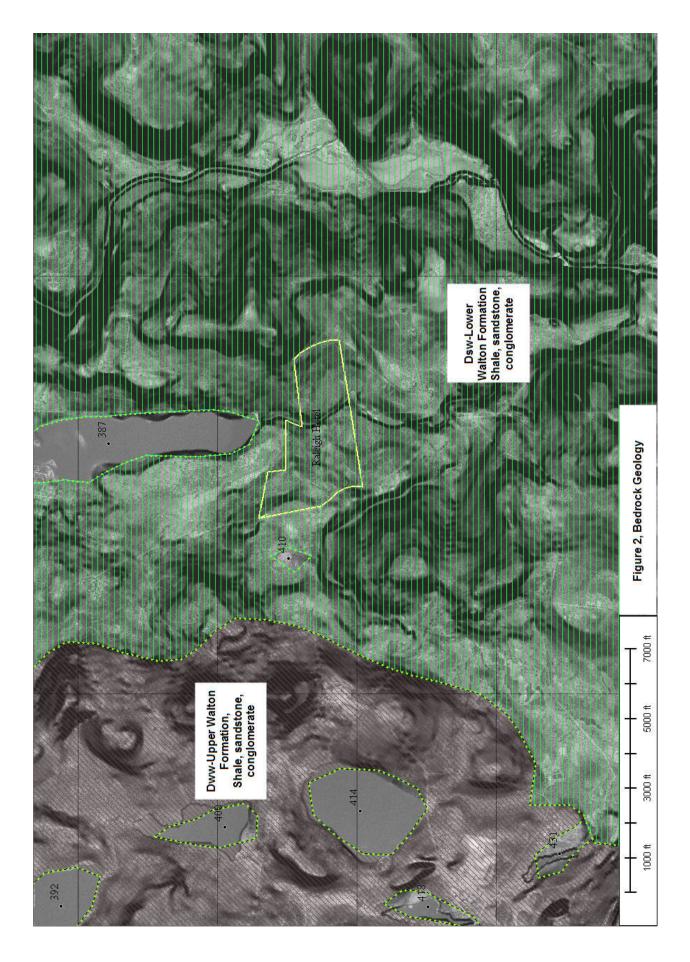
Cc: William H. Illing, P.E., Town Engineer - (T) Fallsburg File

Appendix B

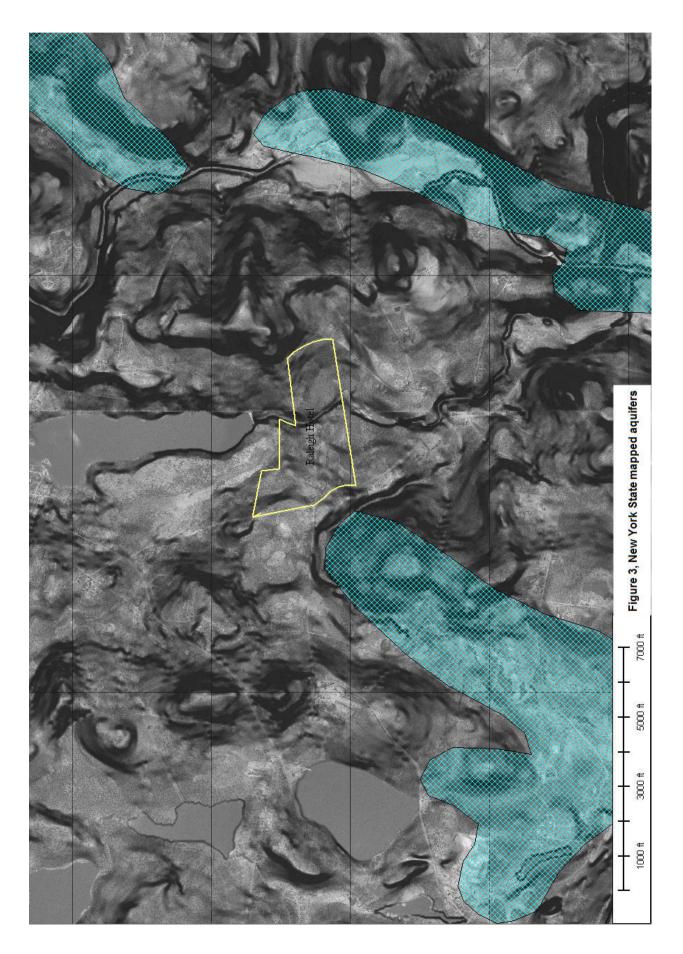
Fracture Trace Report

4 Deer Trail Cornwall, New York 12518 845 534 3816 [tel] 845 534 3314 [fax] info@groundwatergeology.com

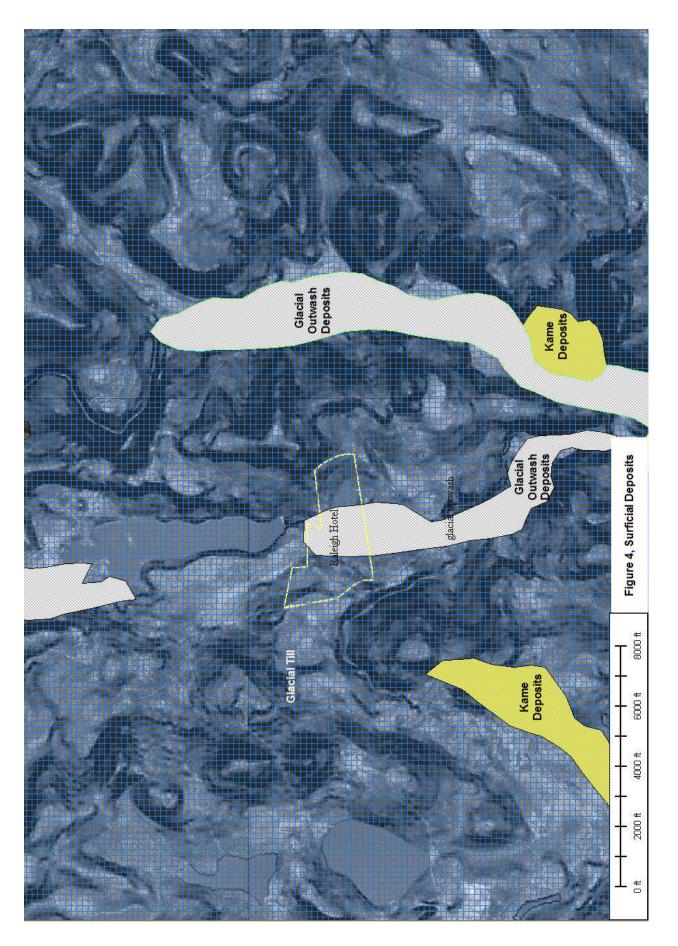

Technical Memorandum

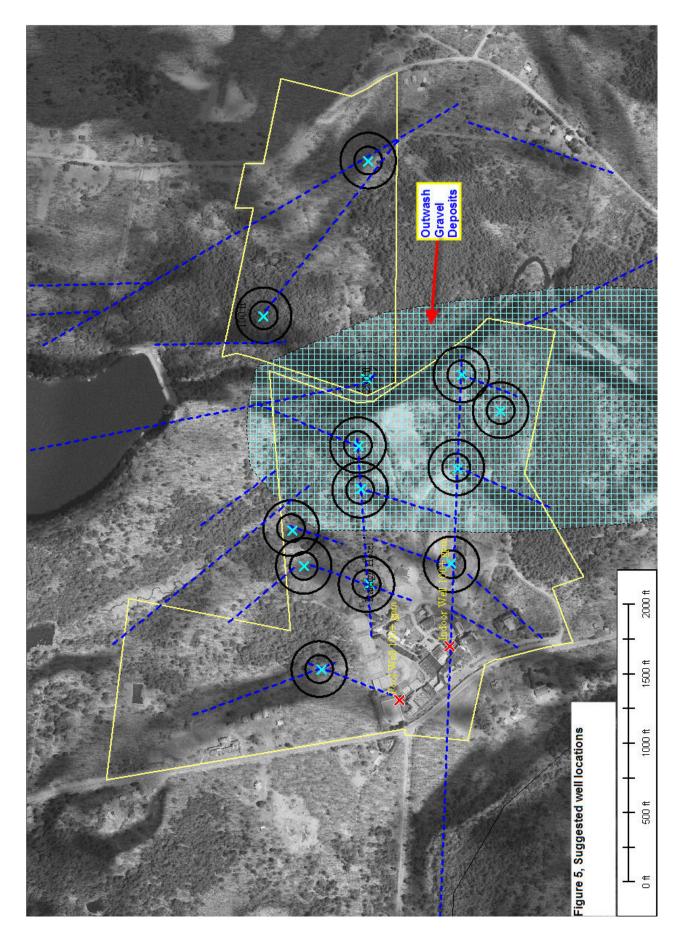

То:	Maureen Fisher
From:	Sergio Smiriglio
CC:	
Date:	March 6, 2008
Re:	Raleigh Hotel Hotel, Sullivan County, Fracture Trace Analysis

The Fracture Trace of the Raleigh Hotel site in Fallsburgh, NY, was completed using the United States Geologic Survey [USGS] digital elevation data combined with one foot orthoimagery. The data was processed in a geo-spatial software package. The database also includes existing aquifer and geologic fault data from the New York State Museum archives. Figure 1 shows the project site outlined in yellow. The two existing project wells are shown on the western side of the property. Both wells are estimated to produce in excess of 100 gallons per minute.


The Fallsburgh area is underlain by the Upper Devonian aged Walton formation, a unit primarily composed of shale, sandstone and conglomerate rock. The rock structure is generally flat lying to slightly inclined. Bedrock outcrops are not common except along road rock-cuts or on hill peaks. The Walton formation, both the lower and the upper, has poor primary permeability but does have better than average secondary permeability since the rock units, other than the shale portion, contains a relatively low percentage of clay components. [Figure 2] Therefore, wells that intercept bedrock fractures have somewhat higher yields than do average wells in other rock types. The NYS Museum data indicates that there are unconsolidated aquifer deposits [glacial outwash] in the area of the Raleigh Hotel bit no "aquifers" are mapped in the area. [Figures 3 and 4]

The suggested test drilling locations are shown on figure 5. The suggested locations are indicated by blue "x"s. The location within the hachured area may be within the area indicated to be sand and gravel aquifer. All wells should be drilled to a minimum depth of 600 feet, unless sufficient water is developed before reaching that point. Wells drilled within the "sand and gravel" area should be drilled using a method suitable for developing unconsolidated aquifer wells.





Page 3

Page 4

Page 6

Appendix C

Well Logs

06/30/2009 17:38 9144825062

FULTON	WELL	DRILLING
--------	------	----------

PAGE 02

NEW YORK \$1	ATE DEPARTMENT OF	ENVIRONMENTAL CONSI		ON	
(1) COUNTY Sullivan				(3) DE	C Well Number
(2) TOWN 7 autoburg WA		PLETION REPORT	-	دىك	318
(4) OWNER			1		
(5) ADDRESS S Hutal Devolup ~	vert - Well	4 1	_		"LOG
(6) LOCATION OF WELL (See Instructions on The verte) (C)		above, also provide Lat / Long below		th to Bedroc	ground surface)
Show Lat/Long if aveilable and method used.		anove, also provide Laty Could Delow			(ft. above S.L.)
TO GPS D Map Interpolation NH1.4D.859	18) DEPTH TO GROUNDWATER	DATE MEASURED		or b	elow (~) ground surface)
LAND SURFACE (feet) 400	BELOW LAND SURFACE (N	40 5/28/0	2	TOP	
(9) DIAMETER	en and an			- 15-	TEASO, 1 & Some
(10) LENGTH	in.	in. in.	-	.25	Rich Sheke
50 t. l	ft.)	ft. in.		. 60	Grow Rook
(11) GROUT TYPE / SEALING	(12) GROUT / SEALING INTERV (feet) FR	AL TO	60	-90	Rel-shake
			90	- 105	Koroy Roat
(13) MAKE & MATERIAL	(14) OPENINGS			- 120	Red Shele Gray Rook
(15) DIAMETER In.	in.	in. in.		- 125 - 135	Red Shake
(15) LENGTH ft.	ñ.	ft.) in.	-1	-145	Gray Hat
(17) DEPTH TO TOP OF SCREEN, FROM TOP OF CASING (Feet)				- 160	Rol Stale
HAR HUBBLE AND WHEN DURING THE STATE				- 165	Gray April
(18) DATE 5/28/09	(19) OURATION OF TEST	1/2 hc	1	- (76 - 210	Rol State
(20) LIFT METHOD Pump 🙀 Air Lift 🗌 Bail	(21) STABILIZED DISCHARGE (3PM) 15		- 320	Benck Shel
(22) STATIC LEVEL PRIOR TO TEST (feevinches below top of casing) 40	(23) MAXIMUM DRAWDOWN (Si (feet/inches balow top of cas	abilized) ing) 300		0-235	bray Rock
(24) RECOVERY (Time in hours/minutes)	(25) Was the water produced duri discharged away from immed	ng the lest		5 2.50	Redshalve
			1 ^{2.50}	- 305 r	white Gray Aut
(28) PUMP INSTALLED? YES NO	(27) DATE	(28) PUMP INSTALLER		- 330	Red Shake
(29) TYPE	(30) MAKE	(31) MODEL	ିଆରେ	- 340 J	water
(32) MAXIMUM CAPACITY (GPM)	(33) PUMP INSTALLATION LEVE FROM TOP OF CASING (Fee	ц ю	1 -	2-360 - 380	Kai shahe Gray Rixik
134) METHOD OF DRILLING	(35) USE OF WATER		19	- 400	Rod Shehe
(36) DATE DRILLING WORK STARTED	(See instructions for choices) (37) DATE DRILLING WORK COM	TUDIC	-		
(38) DATE REPORT FILED (39) REGISTERED COMPANY	5/28	(40) DEC REGISTRATION NO.	-		
6/24/09		NYRD 10108			
(41) CERTIFIED DRILLER (Print name)	(42) CERTIFIED DRILLER SIGN	TURE *	-		
Eugene Fulton	Ergere f	Fulton			
* By signing this document I hereby affirm that: (1) defined by Environmental Conservation Law §15-150	(2) this water well was o	onstructed in accordance with		BOTTO	
water well standards promulgated by the New York 5 perjury the information provided in this Well Complet understand that any false statement made herein is §210.45.	tion Report is true, accurate	and complete, and I emeanor under Penal Law	þw	NERIC	COPY ,
LOCATION SKETCH - Indicate north		8/2007	<u> </u>		
	1				
EN otwe	(<u>}</u>				
7					
' De	sventay				

NEW YOR	K STATE DEPARTMENT OF ENVIRONMENTAL CONSER		
(1) COUNTY Sull, Daw		(3) DEC	Well Number
12) TOWN Hallsburg		54.33	25
(4) OWNER	WATER WELL COMPLETION REPORT		
Rabeigh Hotel Deve	tyment - Well # 2-	- (43)	LOG
Do. Fallsburn N	N	Depth to Bedrock	(ft. below ground surface)
(5) LOCATION OF WELL (See Instruction of Reverse) Show LauLong if available	(Check here 🔲 if same as addreas above, also provide Lat / Long below)		(ft. above S.L.)
and method used: SCGPS D Mep Interpolation N 41, 40, 8	566 W074. 37.624		(ft., above (+) flow (-) ground surface)
(7) DEPTH OF WELL BELOW LAND SURFACE (feet)	(1) DEPTH TO GROUNDWATER DATE MEASURED BELOW LAND SURFACE (foot) 40 6 4 09	TOP	
(9) DIAMETER	HIR CONTRACTOR OF THE WORLD IN THE	0-5	Topsaul
(10) LENGTH	in.] in.] in.	5.25	Red Shele
	ft. ft. in.	25-50	Gay Rit
	(12) GROUT / SEALING INTERVAL (feet) FROM TO	20-05 001-28	Gray Reck
(13) MAKE & MATERIAL	(14) OPENINGS	100-130	Red Shale
(15) DIAMETER	·····	130-140	Gray Rock Red Shah
In. (16) LENGTH	in. In. in.	160 - 180	Gray Ruck
tt.	ft. ft. in, 3 (Feet)	180-185	Red Shale
		165-210 210-220	Gray Rut Rul shat
(18) DATE 6/2-109	(19) DURATION OF TEST 1/2 http://www.usualina.com	220-225	Gray Rist
(20) LIFT METHOD	(21) STABILIZED DISCHARGE (GPM)	825.245	Rul Shale
(22) STATIC LEVEL PRIOR TO TEST (reevinches below top of casing) 40	(23) MAXIMUM DRAWDOWN (Stabilized)	045-310	Gary Rock
(24) RECOVERY (Time In hours/minutes)	(feet/inches below top of casing) 5 C O (25) Wes the weller produced during the test discharged away from mmediate area? Yes X No	3/0-330	Rel shale
		330-340	Grow Rook
(26) PUMP INSTALLED? YES NO	(27) DATE (20) PUMP INSTALLER	340 - 360 360 - 380	Red Shale
(29) TYPE	(30) MAKE (31) MODEL	380 - 405	will Bet Shale
(32) MAXIMUM CAPACITY (GPM)	(33) PUMP INSTALLATION LEVEL FROM TOP OF CASING (Ført)	405-470	Grey Reck
(34) METHOD OF DRILLING		470-480	Black Shale
(36) DATE DRILLING WORK STARTED	(See instructions for chalces) Rustia	480-520	John Gray Roak Read Shale Gray Rick
(38) DATE REPORT FILED (39) REGISTERED COMPAN	6/2/04	530-565	bry Fit
6/24/09 Wm Fulton 's	NYBD 1010K		
(41) CERTIFIED DRILLER (Print name)	(42) CERTIFIED DRILLER SIGNATURE *		
WILLIAM FULTON	Willin Jata		
	It: (1) I am certified to supervise water well drilling activities as 15-1502; (2) this water well was constructed in accordance with	BOTTON	M OF HOLE
water well standards promulgated by the New	York State Department of Health; (3) under the penalty of		
understand that any false statement made here §210.45.	ein is punishable as a class A Misdemeanor under Penal Law 8/2007		
LOCATION SKETCH - Indicate north	<u>ו</u>		
	K N Kuell		
	N Evrell		
	Ĭ		
	Oriveway		

(1) COUNTY (2) TOWN (3) OWNER (4) OWNER (5) ADDRESS (6) LOCATION OF WELL (See Instructions On Reverse) (6) LOCATION OF WELL (See Instructions On Reverse) (6) LOCATION OF WELL (See Instructions On Reverse) (7) DEPTH OF WELL (See Instructions On Reverse) (8) DEPTH TO GROUNDWA BELOW LAND SURFACE (feet) (8) DEPTH TO GROUNDWA BELOW LAND SURFACE (feet) (8) DEPTH TO GROUNDWA BELOW LAND SURFACE (9) DIAMETER (10) LENGTH (11) GROUT TYPE / SEALING (12) GROUT / SEALING (13) MAKE & MATERIAL (14) OPENINGS (15) DIAMETER in. (16) LENGTH (1) (17) DEPTH TO TOP OF SCREEN, FROM TOP OF CASING (Feet) (17) DEPTH TO TOP OF SCREEN, FROM TOP OF CASING (Feet) (18) DATE (19) DIATE (10) LINGTH (10) LINGTH (11) GROUT TYPE / SEALING (12) STABILIZED DISCHARC (13) MAKE & MATERIAL (14) OPENINGS (15) DIAMETER (16) LENGTH (17) DEPTH TO TOP OF SCREEN, FROM TOP OF CASING (Feet) (17) DEPTH TO TOP OF SCREEN, FROM TOP OF CASING (Feet) (18) DATE (19) DATE (19) DIATE (10) LINGTH (10) DIATION OF TEST (12) STATIC LEVEL PRIOR TO TEST (12) STATIC LEVEL PRIOR TO TEST (12) MAXIMUM DRAWDOWN (124) RECOVERY (Time in hours/minutes) (25) Was the water produced	ess above, also provide Lat, TER in. ft. FROM in. ft. ft. ft. ft. ft. in. ft. ft. ft. ft. ft. in. in.	in.	of Casing or below (-) TOP OF W	G (ft. belov ground surfa , (ft. above S (ft., above ground surfa
WATER WELL CO (4) OWNER (5) ADDRESS (6) LOCATION OF WELL (See Instructions On Reverse) Show Latton of WELL (See Instructions On Reverse) (6) LOCATION OF WELL (See Instructions On Reverse) (7) DEPTH OF WELL BELOW LAND SURFACE (feet) (8) DEPTH TO GROUNDWA BELOW LAND SURFACE (feet) (9) DIAMETER (10) LENGTH (11) GROUT TYPE / SEALING (12) GROUT / SEALING (13) MAKE & MATERIAL (14) OPENINGS (15) DIAMETER in. (16) LENGTH ft. ft. ft. (16) DENT (17) DEPTH TO TOP OF SCREEN, FROM TOP OF CASING (Feet) VIELD TEST (18) DATE (19) DURATION OF TEST (20) LIFT METHOD (21) STABILIZED DISCHARC (22) STATIC LEVEL PRIOR TO TEST (22) STATIC LEVEL PRIOR TO TEST (24) RECOVERY (Time in hours/minutes)	ess above, also provide Lat, TER in. ft. FROM in. ft. ft. ft. ft. ft. in. ft. ft. ft. ft. ft. in. in.	in.	(43) LO((43) LO(and Elev. 1260 of Casing 2 or below (-) TOP OF W TOP OF W - 3 - 5 - 5 - 5 - 10 - 125 - 145 - 145 - 145 - 145 - 145	G (ft. below ground surfact , (ft. above S (ft., above ground surfact /ELL
(4) OWNER (5) ADDRESS (6) LOCATION OF WELL (See instructions On Reverse) Show LaVLong if available and method used: GPS Map Interpolation 4 4 4 7 4 8 6 0 EPTH TO GROUNDWA BELOW LAND SURFACE (feet) 7 6 1 6 1 1 1 1 1 1 1	ess above, also provide Lat, TER in. ft. FROM in. ft. ft. ft. ft. ft. in. ft. ft. ft. ft. ft. in. in.	in.	th to Bedrock ind Elev. <u>[2460</u> of Casing or below (-) TOP OF W _	(ft. belov ground surfar (ft. above S (ft., above ground surfar /ELL
(6) LOCATION OF WELL (See Instructions On Reverse) (Check here if same as address of the sa	TER (feet) Date in. ft. FROM TO	/Long below) Grou Top of in. 3 in. in. 3 in. 3 in. 3 in. 3 in. 3 in. 3 in. 3 in. 3 in. in. in. in. in. in. in. in. in. in.	th to Bedrock ind Elev. <u>[2460</u> of Casing or below (-) TOP OF W _	(ft. belov ground surfar (ft. above S (ft., above ground surfar /ELL
(6) LOCATION OF WELL (See Instructions On Reverse), Show LaVLong if available and method used: (Check here if same as address and method used: (7) DEPTH OF WELL (SEE INSTRUCTION OF WELL BELOW LAND SURFACE (feet) (8) DEPTH TO GROUNDWA BELOW LAND SURFACE (feet) (7) DEPTH OF WELL BELOW LAND SURFACE (feet) (7) DEPTH OF WELL BELOW LAND SURFACE (feet) (9) DIAMETER (a) Interpolation (10) LENGTH (b) Interpolation (11) GROUT TYPE / SEALING (12) GROUT / SEALING INTEr (feet) (13) MAKE & MATERIAL (14) OPENINGS (15) DIAMETER in. (16) LENGTH ft. (17) DEPTH TO TOP OF SCREEN, FROM TOP OF CASING (Feet) YIELD TEST (18) DATE (19) DURATION OF TEST (18) DATE (19) DURATION OF TEST (18) DATE (12) STABILIZED DISCHARCE (feet) (22) STATIC LEVEL PRIOR TO TEST (22) STATIC LEVEL PRIOR TO TEST (23) MAXIMUM DRAWDOWN (feet/inches below top of casing) (24) RECOVERY (Time in hours/minutes) (25) Was the water produced	TER (feet) Date in. ft. FROM TO	/Long below) Grou Top of in. 3 in. in. 3 in. 3 in. 3 in. 3 in. 3 in. 3 in. 3 in. 3 in. in. in. in. in. in. in. in. in. in.	th to Bedrock ind Elev. <u>[2460</u> of Casing or below (-) TOP OF W _	(ft. belov ground surfar (ft. above S (ft., above ground surfar /ELL
Show Lat/Long if available and method used: Image: Constraint of the state o	TER (feet) Date in. ft. FROM TO	/Long below) Grou Top of in. 3 in. in. 3 in. 3 in. 3 in. 3 in. 3 in. 3 in. 3 in. 3 in. in. in. in. in. in. in. in. in. in.	c 1260 of Casing 2 or below (-) TOP OF W TOP OF W 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ground surfa (ft. above S (ft., above ground surfa /ELL
Show LatUong if available and method used: Image: Constraint of the second	TER (feet) Date in. ft. FROM TO	in. 3 in. 4 in. 4 in	of Casing or below (-) TOP OF W - 3 - 5 - 5 - 5 - 5 - 5 - 75 - 10 - 130 - 130 - 125 - 145 - 145	_ (ft., above) ground surf /ELL
(7) DEPTH OF WELL BELOW LAND SURFACE (feet) (8) DEPTH TO GROUNDWA BELOW LAND SURFACE (9) DIAMETER in. (10) LENGTH ft. (11) GROUT TYPE / SEALING (12) GROUT / SEALING INTI (feet) (13) MAKE & MATERIAL (14) OPENINGS (15) DIAMETER in. (16) LENGTH ft. (17) DEPTH TO TOP OF SCREEN, FROM TOP OF CASING (Feet) YIELD TEST (18) DATE (19) DURATION OF TEST (18) DATE (19) DURATION OF TEST (20) LIFT METHOD Image: Air Lift Bail (22) STATIC LEVEL PRIOR TO TEST (23) MAXIMUM DRAWDOWN (feet/inches below top of casing) (24) RECOVERY (Time in hours/minutes)	E (feet)	in. 8 in. 8 in. 8 in. 97 57 57 57 57 57 57 57 57 57 5	or below (-) TOP OF W - 3 - 5 - 5 - 5 - 5 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7	eround surf
LAND SURFACE (feet) 37.5 BELOW LAND SURFACE CASINGS (9) DIAMETER in. in. in. (10) LENGTH ft. ft. in. in. (10) LENGTH ft. ft. in. in. (11) GROUT TYPE / SEALING (12) GROUT / SEALING INTE (feet) (12) GROUT / SEALING INTE (feet) SCREENS (13) MAKE & MATERIAL (14) OPENINGS (15) DIAMETER in. in. (15) DIAMETER in. (16) LENGTH ft. (17) DEPTH TO TOP OF SCREEN, FROM TOP OF CASING (Feet) YIELD TEST (18) DATE (19) DURATION OF TEST ; (20) LIFT METHOD (21) STABILIZED DISCHARCE (22) STATIC LEVEL PRIOR TO TEST (22) STATIC LEVEL PRIOR TO TEST (23) MAXIMUM DRAWDOWN (feet/inches below top of casing) (24) RECOVERY (Time in hours/minutes) (25) Was the water produced	E (feet)	in. 8 in. 8 in. 8 55 55 7,5 56 7,5 56 56 56 56 56 56 56 56 56 56 56 56 56	- 3 - 8 - 25 - 35 - 75 - 75 - 75 - 125 - 125 - 125 - 125 - 125 - 125	L
(9) DIAMETER in. (10) LENGTH in. (11) GROUT TYPE / SEALING (12) GROUT / SEALING INTI (feet) (11) GROUT TYPE / SEALING (12) GROUT / SEALING INTI (feet) (13) MAKE & MATERIAL (12) GROUT / SEALING INTI (feet) (13) MAKE & MATERIAL (14) OPENINGS (15) DIAMETER in. (16) LENGTH ft. (17) DEPTH TO TOP OF SCREEN, FROM TOP OF CASING (Feet) YIELD TEST (18) DATE (19) DURATION OF TEST ; (20) LIFT METHOD (21) STABILIZED DISCHARCE (22) STATIC LEVEL PRIOR TO TEST (feet/inches below top of casing) (23) MAXIMUM DRAWDOWN (feet/inches below top of casing) (24) RECOVERY (Time in hours/minutes) (25) Was the water produced	ft. FROMTO FROMTO in. ft.	in. 3 in. 3 in. 3 in. 3 in. 3 in. 3 in. 40	- 8 - 25 5 35 - 50 - 75 - 120 - 125 - 125 - 145 - 145 - 145	Top So Real St Society R Real St Real St Real St Real St Real St Real St
(10) LENGTH in. (11) GROUT TYPE / SEALING ft. (11) GROUT TYPE / SEALING (12) GROUT / SEALING INTI (feet) (13) MAKE & MATERIAL (14) OPENINGS (15) DIAMETER in. (16) LENGTH ft. (17) DEPTH TO TOP OF SCREEN, FROM TOP OF CASING (Feet) YIELD TEST (18) DATE (19) DURATION OF TEST ; (18) DATE (19) DURATION OF TEST ; (20) LIFT METHOD (21) STABILIZED DISCHARCE (22) STATIC LEVEL PRIOR TO TEST (23) MAXIMUM DRAWDOWN (feet/inches below top of casing) (24) RECOVERY (Time in hours/minutes) (25) Was the water produced	ft. FROMTO FROMTO in. ft.	in. 8 in. 8 55 55 in. 9 60 55 55 55 55 55 55 55 55 55 55 55 55 55	- 8 - 25 5 35 - 50 - 75 - 120 - 125 - 125 - 145 - 145 - 145	Top Sol
(10) LENGTH ft. ft. ft. (11) GROUT TYPE / SEALING (12) GROUT / SEALING INTI (11) GROUT TYPE / SEALING (12) GROUT / SEALING INTI (11) GROUT TYPE / SEALING (12) GROUT / SEALING INTI (13) MAKE & MATERIAL (14) OPENINGS (15) DIAMETER in. (16) LENGTH ft. (17) DEPTH TO TOP OF SCREEN, FROM TOP OF CASING (Feet) YIELD TEST (18) DATE (19) DURATION OF TEST (18) DATE (19) JURATION OF TEST (19) LIFT METHOD Pump (20) LIFT METHOD Pump (21) STABILIZED DISCHARC (21) STABILIZED DISCHARC (22) STATIC LEVEL PRIOR TO TEST (23) MAXIMUM DRAWDOWN (feet/inches below top of casing) (23) MAXIMUM DRAWDOWN (24) RECOVERY (Time in hours/minutes) (25) Was the water produced	ft. FROMTO FROMTO in. ft.	in. 87 	25 535 550 - 75 - 10 - 125 - 125 - 145 - 145	Ken and Ken R Ren R Ren R Ren R Ren R Ren R Ren R
(11) GROUT TYPE / SEALING (12) GROUT / SEALING INTI- (feet) (13) MAKE & MATERIAL (14) OPENINGS (15) DIAMETER in. (15) DIAMETER in. (16) LENGTH ft. (17) DEPTH TO TOP OF SCREEN, FROM TOP OF CASING (Feet) YIELD TEST (18) DATE (19) DURATION OF TEST (20) LIFT METHOD (21) STABILIZED DISCHARCE (22) STATIC LEVEL PRIOR TO TEST (23) MAXIMUM DRAWDOWN (feet/inches below top of casing) (24) RECOVERY (Time in hours/minutes) (25) Was the water produced	ERVAL FROMTO in. ft.		5 35 5- 50 5- 75 5- 10 6- 125 6- 125 15- 145 15- 145	Real States
YIELD TEST (13) DATE (14) OPENINGS (15) DIAMETER in. (15) DIAMETER in. (16) LENGTH ft. (17) DEPTH TO TOP OF SCREEN, FROM TOP OF CASING (Feet) YIELD TEST (18) DATE (19) DURATION OF TEST (20) LIFT METHOD Pump (20) LIFT METHOD (21) STABILIZED DISCHARCE (22) STATIC LEVEL PRIOR TO TEST (23) MAXIMUM DRAWDOWN (feet/inches below top of casing) (24) RECOVERY (Time in hours/minutes) (25) Was the water produced	FROM TO in. ft.	7.5 in. 1.20	5-50 75 120 125 125 125 145 	Colory R Rect St Rect St Rect St Rect St Rect St Rect St
(13) MAKE & MATERIAL (14) OPENINGS (15) DIAMETER in. (15) DIAMETER in. (16) LENGTH ft. (17) DEPTH TO TOP OF SCREEN, FROM TOP OF CASING (Feet) YIELD TEST (18) DATE (19) DURATION OF TEST (20) LIFT METHOD Pump Air Lift Bail (21) STATIC LEVEL PRIOR TO TEST (23) MAXIMUM DRAWDOWN (feet/inches below top of casing) (23) MAXIMUM DRAWDOWN (24) RECOVERY (Time in hours/minutes) (25) Was the water produced	ft.	7.5 in. 1.20	1-10 1-125 15-145 15-145	Sect Sta Section 1 Ret Sta Sect St Sect St Ret St
(15) DIAMETER in. (15) DIAMETER in. (16) LENGTH ft. (17) DEPTH TO TOP OF SCREEN, FROM TOP OF CASING (Feet) YIELD TEST (18) DATE (19) DURATION OF TEST (19) DURATION OF TEST (20) LIFT METHOD (20) LIFT METHOD Pump Air Lift Bail (21) STABILIZED DISCHARCE (22) STATIC LEVEL PRIOR TO TEST (23) MAXIMUM DRAWDOWN (feet/inches below top of casing) (24) RECOVERY (Time in hours/minutes) (25) Was the water produced	ft.	in.	0-125 0-125 15-145 15-145	enterg F Rat Sh Certary R Rat Sh Rat Sh Rat Sh
in. in. (16) LENGTH ft. (17) DEPTH TO TOP OF SCREEN, FROM TOP OF CASING (Feet) VIELD TEST (18) DATE (19) DURATION OF TEST (10) LIFT METHOD (20) LIFT METHOD (20) LIFT METHOD (20) LIFT METHOD (20) LIFT METHOD (21) STATIC LEVEL PRIOR TO TEST (22) STATIC LEVEL PRIOR TO TEST (24) RECOVERY (Time in hours/minutes) (25) Was the water produced	ft.	in.	- 125 15- 145 14- 190	Rat St Colory R Rat St Colory E Rat St
(16) LENGTH ft. ft. ft. (17) DEPTH TO TOP OF SCREEN, FROM TOP OF CASING (Feet) YIELD TEST (18) DATE (19) DURATION OF TEST (20) LIFT METHOD [19] Pump [20] LIFT METHOD (21) STABILIZED DISCHARCE (22) STATIC LEVEL PRIOR TO TEST (23) MAXIMUM DRAWDOWN (feet/inches below top of casing) (24) RECOVERY (Time in hours/minutes) (25) Was the water produced	ft.	42	5- 145 A. 190	Colony M Bart Sh Real Sh Real Sh
INTELD TEST (17) DEPTH TO TOP OF SCREEN, FROM TOP OF CASING (Feet) YIELD TEST (18) DATE (19) DURATION OF TEST (20) LIFT METHOD (20) LIFT METHOD Pump (21) STABILIZED DISCHARCE (21) STABILIZED DISCHARCE (22) STATIC LEVEL PRIOR TO TEST (22) STATIC LEVEL PRIOR TO TEST (23) MAXIMUM DRAWDOWN (feet/inches below top of casing) (24) RECOVERY (Time in hours/minutes) (25) Was the water produced		in. NO	A. 490	fred St Gelang P Reed St
YIELD TEST (18) DATE (19) DURATION OF TEST (20) LIFT METHOD Pump (20) LIFT METHOD (21) STABILIZED DISCHARCE (22) STATIC LEVEL PRIOR TO TEST (23) MAXIMUM DRAWDOWN (feet/inches below top of casing) (23) MAXIMUM DRAWDOWN (24) RECOVERY (Time in hours/minutes) (25) Was the water produced				Golomy B Roch Sh
(18) DATE (19) DURATION OF TEST (20) LIFT METHOD Pump (20) LIFT METHOD (21) STABILIZED DISCHARCE (22) STATIC LEVEL PRIOR TO TEST (23) MAXIMUM DRAWDOWN (feet/inches below top of casing) (24) RECOVERY (Time in hours/minutes) (25) Was the water produced		<u> </u>	6-210	Red Sk
(20) LIFT METHOD (21) STABILIZED DISCHARCE (20) LIFT METHOD (21) STABILIZED DISCHARCE (22) STATIC LEVEL PRIOR TO TEST (23) MAXIMUM DRAWDOWN (feet/inches below top of casing) (24) RECOVERY (Time in hours/minutes) (24) RECOVERY (Time in hours/minutes) (25) Was the water produced	1		1	1
Pump Air Lift Bail Call Statute Distributes (22) STATIC LEVEL PRIOR TO TEST (feet/inches below top of casing) (23) MAXIMUM DRAWDOWN (feet/inches below top of (feet/inches below top of (24) RECOVERY (Time in hours/minutes) (25) Was the water produced	She		U- 330	Gray No
(feet/inches below top of casing) / (feet/inches below top of (24) RECOVERY (Time in hours/minutes) (25) Was the water produced	GPM)			Rev 3
(24) RECOVERY (Time in hours/minutes) (25) Was the water produced	N (Stabilized)		an 19 19-5 °°	lolary K
	<u> </u>	625	1-285	K. A.
		No	5 - 300	Contract &
26) PUMP INSTALLATION (26) PUMP INSTALLED?	(28) PUMP INSTALLER	3.4	- 520 34	KA Sk
YES NO	(28) FOMF INSTALLER	i ka	320	Cong Ki
(29) TYPE (30) MAKE	(31) MODEL	334	340	2.51 51
(32) MAXIMUM CAPACITY (GPM) (33) PUMP INSTALLATION L FROM TOP OF CASING			10-375	6,00,47 N
	(,,	be		
(34) METHOD OF DRILLING Rotary Cable Tool Other (See instructions for cho	ices)	· ·	eeperiod u	Jul 9
(36) DATE DRILLING WORK STARTED (37) DATE DRILLING WORK	THURL	380)- 400	Kied Sle
6/14	=/09	400	-515	Gray RI
(38) DATE REPORT FILED (39) REGISTERED COMPANY	(40) DEC REGISTRATIO	N NO.	- 5-20	Red SI
White the Herrick Dur Wall Dr	NYRD 101	<u> </u>	0-530	Greer K
(41) CERTIFIED DRILLER (Print name) (42) CERTIFIED DRILLER SI	GNATURE *	530		Black
Eugene Fultin Eugene	Euto		0-580	Greef Ri
* By signing this document I hereby affirm that: (1) I am certified to supervisidefined by Environmental Conservation Law §15-1502; (2) this water well wa	e water well drilling acti	vities as	D BOTTOM OF	HOLF

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION				
(1) COUNTY Sullivan		(3) DEC Well Number		
(2) TOWN Fallsburg	-	513390		
(4) OWNER	ER WELL COMPLETION REPORT			
· Reduigh Hotel Developm	est Well#5	⁽⁴³⁾ LOG		
(5) ADDRESS Q Heiden Rt So, fall	Slourg NV	Depth to Bedrock (ft. below ground surface)		
	ck here to same as address above, also provide Lat / Long below)	Ground Elev. 1227 (ft. above S.L.)		
and method used:	1 . 1. 7/ 27 / 0/	Top of Casing (ft., above (+) or below (-) ground surface)		
(7) DEPTH OF WELL BELOW LAND SURFACE (feet) 625	(8) DEPTH TO GROUNDWATER BELOW LAND SURFACE (feet) DATE MEASURED	TOP OF WELL		
C	ASINGS			
(9) DIAMETER 6/8 in.	in. in. in.	0-14 Topsoil: Boardwards 14-25 Grany Rock		
(10) LENGTH 50 ft.	ft. ft. in.	25-45 Red Shake		
(11) GROUT TYPE / SEALING	(12) GROUT / SEALING INTERVAL (feet) FROM TO	45.60 Gray Rock		
(13) MAKE & MATERIAL	REENS (14) OPENINGS	60-95 Red Share 95-110 Gray Roele		
(15) DIAMETER		110-165 1st Red Shake		
in.	in. in. in.	165-205 With Gray Rock		
(16) LENGTH ft.	ft. ft. in.	205-230 Rod Shale 230-240 Gray Roct		
(17) DEPTH TO TOP OF SCREEN, FROM TOP OF CASING (Feet) 230-240 Gray Thee 230 Red Shele Red Shele				
(18) DATE	LD TEST	250-280 Gray Rock		
9/1/09 (20) LIFT METHOD	(21) STABILIZED DISCHARGE (GPM)	280-295 Red Shale 295-310 Gray Rock		
Pump Air Lift Bail)3	295-310 Gray Rock 310-335 Red Shale		
(22) STATIC LEVEL PRIOR TO TEST (feet/inches below top of casing)	(23) MAXIMUM DRAWDOWN (Stabilized) (feet/inches below top of casing)	335-345 Gray Rock		
(24) RECOVERY (Time in hours/minutes)	(25) Was the water produced during the test discharged away from immediate area? Yes Y No	345-365 Red Shale -		
(26) PUMP INSTALLED?	(27) DATE (28) PUMP INSTALLER	365-390 Grey Rock		
YES NO (29) TYPE	(30) MAKE (31) MODEL	390-415 Red Shalle 415-430 Gray Rock		
(32) MAXIMUM CAPACITY (GPM)	(33) PUMP INSTALLATION LEVEL	430-440 Black Shake		
Park and an and a second	FROM TOP OF CASING (Feet)	440-510 16Eer 200t		
(34) METHOD OF DRILLING	(35) USE OF WATER (See instructions for choices)	510-520 Black Shale		
(36) DATE DRILLING WORK STARTED	(See instructions for choices) PUBLIC	520-525 Gray Rock		
(38) DATE REPORT FILED (39) REGISTERED COMPANY	(40) DEC REGISTRATION NO.	525-535 Rod Shale		
Wm Fulton & So	Well Drilling NYRD 10108	535-545 Black Shale 545-575 Grey Rock		
(41) CERTIFIED DRILLER (Print name)	(42) CERTIFIED DRILLER SIGNATURE *	575-590 Grey Roak W AUNT		
Eugenie Fulton	Eugre Fulton	590-5951 W/guartz 595-615 Red Shalp		
* By signing this document I hereby affirm that: (1) I am certified to supervise water well drilling activities as defined by Environmental Conservation Law §15-1502; (2) this water well was constructed in accordance with water well standards promulgated by the New York State Department of Health; (3) under the penalty of				
perjury the information provided in this Well Complete	ion Report is true, accurate and complete, and I	DWNER COPY		
§210.45.	8/2007			
LOCATION SKETCH - Indicate north	1			
1.1	(Hote)			
1 South				
well				
0				

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION			
(1) COUNTY Sullivan		(3) DEC Well Number	
(2) TOWN Fallsbusg		513377	
(4) OWNER	ER WELL COMPLETION REPORT		
Raliegh Hotel De	velopment well # 4	⁽⁴³⁾ LOG	
(5) ADDRESS Heiden Rd Fallsh		Depth to Bedrock (ft. below	
1610611 10 191700	k here if same as address above, also provide Lat / Long below)	Ground Elev. 737 (ft. above S.L.)	
and method used:	()	Top of Casing (ft. above (+)	
(7) DEPTH OF WELL BELOW	(8) DEPTH TO GROUNDWATER DATE MEASURED	TOP OF WELL	
200	SINGS		
(9) DIAMETER	n. in. in.	0-10 TOPSOIL	
(10) LENGTH 47 ft. 1	t. ft. in.	200-225 Red Share	
(11) GROUT TYPE / SEALING	(12) GROUT / SEALING INTERVAL (feet) FROM TO	225-235 Gray Rock	
SC	REENS	235-250 Red Shele	
(13) MAKE & MATERIAL	(14) OPENINGS	285-300 Red Shule	
(15) DIAMETER.	n. in. in.	300-310 gray Rock	
(16) LENGTH	t. ft. in.	310-335 st Red Shele	
(17) DEPTH TO TOP OF SCREEN, FROM TOP OF CASING (Feet)		325 1 Water logpon 335-345 Gray Rock	
YIEL	DTEST	345-360 Red Shahe	
(18) DATE 8 17/09	(19) DURATION OF TEST 11- hour	360-385 Gray Rock	
(20) LIFT METHOD	(21) STABILIZED DISCHARGE (GPM)	385-410 Red Shale	
(22) STATIC LEVEL PRIOR TO TEST (feet/inches below top of casing) 6 0	(23) MAXIMUM DRAWDOWN (Stabilized) (feet/inches below top of casing)	465 20 pater 30 gpm	
(24) RECOVERY (Time in hours/minutes)	(25) Was the water produced during the test discharged away from immediate area? Yes X No	410-500 Gray Rock	
PUMP IN	STALLATION		
(26) PUMP INSTALLED? YES NO X	(27) DATE (28) PUMP INSTALLER		
(29) TYPE	(30) MAKE (31) MODEL		
(32) MAXIMUM CAPACITY (GPM)	(33) PUMP INSTALLATION LEVEL FROM TOP OF CASING (Feet)		
(34) METHOD OF DRILLING	(35) USE OF WATER (See instructions for choices) Public		
(36) DATE DRILLING WORK STARTED	(37) DATE DRILLING WORK COMPLETED		
(38) DATE REPORT FILED (39) REGISTERED COMPANY			
(41) CERTIFIED DRILLER (Print name)			
Eugene Fulton	(42) CERTIFIED DRILLER SIGNATURE*		
	am certified to supervise water well drilling activities as	POTTON OF HOLE	
defined by Environmental Conservation Law §15-1502 water well standards promulgated by the New York St	; (2) this water well was constructed in accordance with ate Department of Health; (3) under the penalty of	BOTTOM OF HOLE	
perjury the information provided in this Well Completi understand that any false statement made herein is p	unishable as a class A Misdemeanor under Penal Law	WNER COPY	
§210.45.	8/2007		
LOCATION SKETCH - Indicate north		and the second sec	
(]	o well		
E N	n werr		
	Driveway		
Hote	Di ordy		
V			

Appendix D

Homeowner Letters and Questionnaire

Property Owners w/Wells within 1,500 feet of the Test Wells

Map #	Recipient Mailing Address	Physical Address	Response	Comments
	151-32.1	Heiden Road (no # address)		
	Stella Mossini			
1	248-16 Union Tpke			No Response
	Bellrose, New York 11426			
	151-32.3	666 Heiden Road		
	Stella Mossini	Thompson, New York		
	248-16 Union Tpke			No Response
	Bellrose, New York 11426			
	151-32.2	660 Heiden Road		
	Stephen Fortunato	Thompson, New York		
	PO Box 9	Thompson, New York		No Response
				No Response
	Thompsonville, New York 12784			
	151-27	Heiden Road (no # address)		
	Laurie H Landon			
4	9 Ann Blvd.			No Response
	Chestnut Ridge, New York 10977			
	151-29	689 Heiden Road		
	Congregation and Yeshiva	Thompson, New York		No Response
	Hatorah Mivtzar			
	PO Box 363			
	Monsey, New York 10952			
	151-31	669 Heiden Road		
	Leonid Tune	Thompson, New York		
	PO Box 127			No Response
	Thompsonville, New York 12784			
	151-33	657 Heiden Road		
	151-33 Bobover Yeshiva Bnei Zion	Thompson, New York		
	PO Box 190376			No Response
	Brooklyn, New York 11219			
	BIOONIYII, NEW TOIK 11219			
8	Fallsburg Fishing and Boating Club	Lot 26 and Lot 52	Yes, Uhl and Bisnoff	
	Lakes Street			
	South Fallsburg, New York			
Symbol		Yes Response Rec'd & Selected for Monitoring	<u>I</u>	1
KEY:		rea reaponae net a a selected for Monitoring		

TIM MILLER **ASSOCIATES, INC.**

10 North Street, Cold Spring, NY 10516 (845) 265-4400 265-4418 fax

www.timmillerassociates.com

August 13, 2009

Property Owner Town of Fallsburg, New York

RE: **RAHAL Property (Raleigh Hotel)** Pump Test Off-Site Monitoring

Dear Property Owner:

The applicant for the proposed development known as RAHAL Property "Raleigh Hotel Property" has engaged our firm to evaluate the groundwater supply for the project and to evaluate any potential off-site well impacts. The results of this study will be included as part of an environmental impact study for the project. We seek your cooperation in enabling us to conduct the ground water testing program.

Water for the RAHAL project will be supplied from groundwater wells on the project site. As an initial step in this process, we are sending questionnaires to residences/private properties in the immediate vicinity of the project to collect basic information on existing wells, including water quantity and quality. We encourage you to fill out as much information as possible on the form and submit it to us in the enclosed pre-stamped envelope to be returned to us by August 20, 2009.

The second part of the groundwater program involves conducting a pump test of the wells previously installed on the property while simultaneously monitoring water levels in a select number of private wells in the project vicinity. To that end, we request that you indicate on the attached letter whether you would allow your well to be monitored, while we pump the project's wells. Consent does not mean that your well will be monitored; but we need to secure consent before finalizing the testing program.

If your well is selected to be monitored, the process will not exceed a period of two weeks. The monitoring procedure will require the insertion of an electronic water level monitoring probe that is disinfected prior to entry into your well to measure the water level in your well throughout the test.

A professional, experienced in this work, will visit the well to install and then periodically monitor the probe, typically each day during the testing period. Collection of the water level information typically takes about 15 minutes per visit. We will endeavor not to disturb you during the monitoring visits, which will take place outside of your house. After the conclusion of the testing, the technician will remove the probe and properly close your well.

Well monitoring should have no detrimental effects - it assesses water levels in your well before, during and after the on-site wells are pump tested. Although no effects are

anticipated, the applicant will be responsible for any damage to your well as a result of the monitoring program, but will not be responsible for any pre-existing conditions.

Occasionally, especially in older wells or wells with high iron and/or manganese, insertion of a test probe will cause the well water to become temporarily cloudy. This is due to the agitation of fine particles that have settled in the well over time. This condition typically clears within 24 hours and is not a health concern.

The monitoring data from your well will be made available to you, at no charge, and may prove useful to you in ascertaining existing conditions of your well.

By checking the first line below and signing this letter, you hereby agree to permit our technician to enter your property, with prior notice, for the purpose of monitoring your well. If you do not want your well monitored, please check the second line.

Please sign and print your name, address, telephone number, and email address on the next page. Please mail this page, along with the completed questionnaire in the enclosed envelope by <u>August 20, 2009</u>. You may also fax the information to (845) 265-4418 or email it to me at <u>mfisher@timmillerassocaties.com</u>. If you have any questions about this process please feel free to call the undersigned at (845) 265-4400. Thank you for your cooperation in this matter.

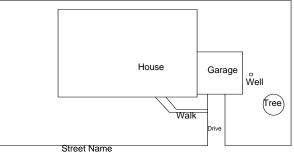
Sincerely,

ORIGINAL SIGNED

Maureen S. Fisher Environmental Scientist TIM MILLER ASSOCIATES, INC.

Please check one:

I agree to permit my well to be	e monitored as desci	ribed above.		
I do not agree to allow my well to be monitored. Signature				
Address		Zip		
Eve. Telephone	_ Day Telephone			
Email				
Please send information to:				
Tim Miller Associates, Inc.				
10 North Street Cold Spring, New York 10516				
Phone (845) 265-4400				
Fax (845) 265-4418				
Email: mfisher@timmillerassociates.com				
or				


jdahlgren@timmillerassociates.com

RAHAL "Raleigh Hotel" Property Homeowner Well Monitoring Questionnaire

This questionnaire is being sent to homeowners within the vicinity of the proposed expansion of the RAHAL "Raleigh Hotel" Property on Heiden Road in the Town of Fallsburg, New York, in conjunction with a well monitoring program for the Project.

Please answer the questions below, if you can. If you do not have the necessary information or are unsure how to answer a question, please indicate so.

Please provide a sketch of your property, including well and septic location, as in the example. Use the back of this page for your sketch.

Name _____

Address	

Telephone Number (indicate whether day or evening number) ______

What year was your well installed?

What is the total depth of your well?

What is the approximate depth to the water table, if known?

Does your well tap the bedrock or sand and gravel aguifer?

How much casing was used during the installation of your well?

Is the top of your well above ground, in a well pit, buried, or other?

What is the approximate depth to water-bearing fractures, if known?

Does your well have a submersible pump, a jet pump or a centrifugal pump?

What is the approximate yield of your well?

How far is your well from your or your neighbor's septic leaching field?

Does your well ever run dry?

During high usage times

During dry weather periods

Because of mechanical/electrical problems

Does your well have water quality problems?

Bacterial

Sulfur

Iron

Hardness

Cloudiness

Taste

Chemical

Additional Comments:

Please check one:

I agree to permit my well to be monitored as described above.

I do not agree to allow my well to be monitored.
Signature
Print Name Kennette G. U.H.L Date 8/25/2009
Address 269 OREGON TR. P. M. SUSH, N.S. Zip 12566
Eve. Telephone <u>\$45-401-3036</u> Day Telephone <u>\$45-401-3036</u>
Email seriorumes of 44 Hou, Com

Please send information to:

Tim Miller Associates, Inc. 10 North Street Cold Spring, New York 10516 Phone (845) 265-4400 Fax (845) 265-4418 Email: <u>mfisher@timmillerassociates.com</u> or idahlgren@timmillerassociates.com

.

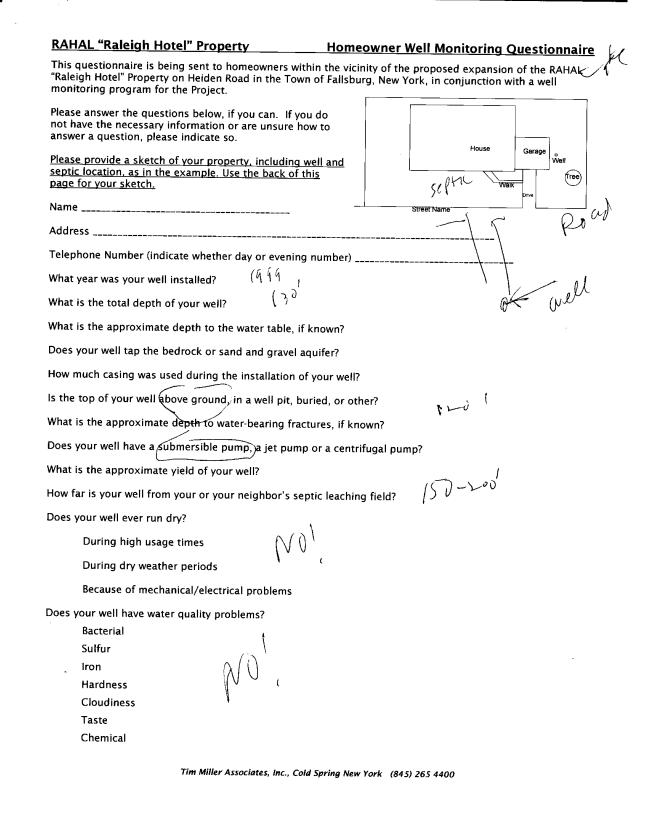
RAHAL "Raleigh Hotel" Property

Homeowner Well Monitoring Questionnaire

This questionnaire is being sent to homeowners within the vicinity of the proposed expansion of the RAHAL "Raleigh Hotel" Property on Heiden Road in the Town of Fallsburg, New York, in conjunction with a well monitoring program for the Project.

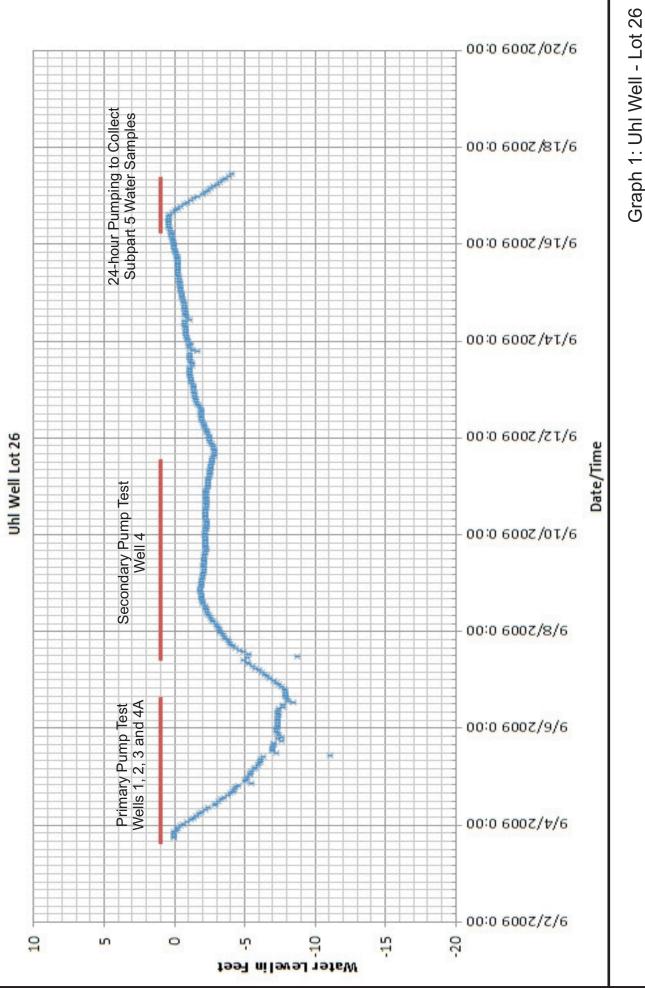
Please answer the questions below, if you can. If you do not have the necessary information or are unsure how to answer a question, please indicate so. House Garage well Please provide a sketch of your property, including well and septic location, as in the example. Use the back of this free Walk page for your sketch. Kennerth G. UNL Street Name West SHele Name ZD. Address 26 WEST SHORE ROAD PLEASURE LAKE, N.S. 845-401-3036 DAGE Telephone Number (indicate whether day or evening number) __ What year was your well installed? 2004 310' What is the total depth of your well? What is the approximate depth to the water table, if known? Does your well tap the bedrock or sand and gravel aquifer? 40 How much casing was used during the installation of your well? Is the top of your welkabove ground in a well pit, buried, or other? What is the approximate depth to water-bearing fractures, if known? 210^{10} Does your well have a submersible pump, a jet pump or a centrifugal pump? What is the approximate yield of your well? 15 GPM 150' How far is your well from your or your neighbor's septic leaching field? Does your well ever run dry? NO During high usage times During dry weather periods Because of mechanical/electrical problems Does your well have water quality problems? **Bacterial** Sulfur Iron Hardness Cloudiness Taste Chemical

RAHAL Property, Well Monitoring August 13, 2009

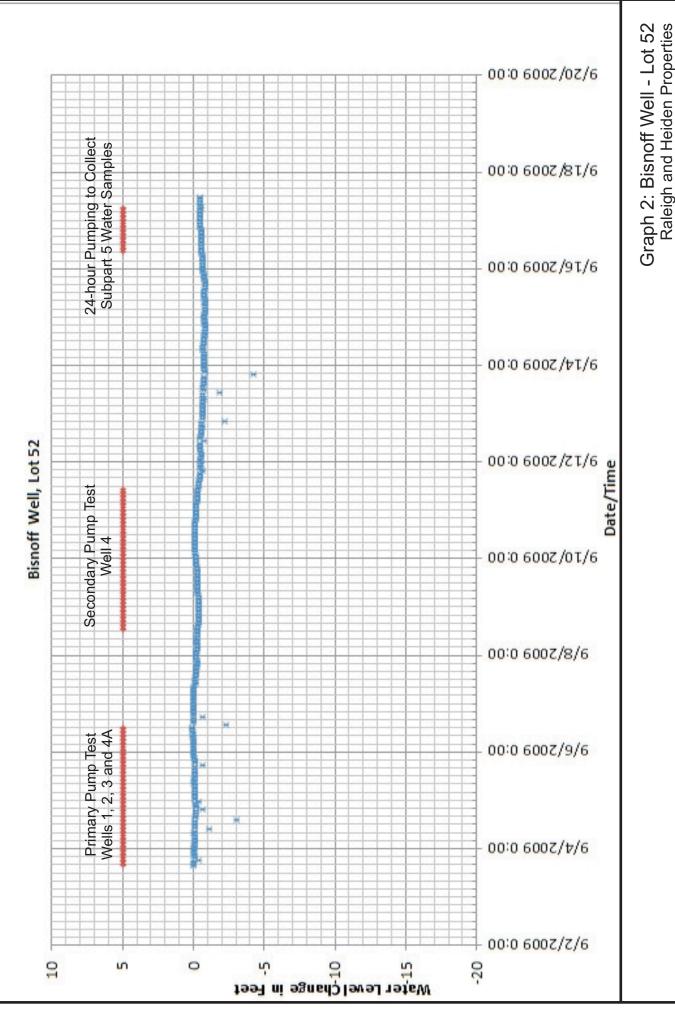

Please check one: I agree to permit my well to be	monitored as described above.
I do not agree to allow my well Signature	
Print Name	Date
Eve. Telephone	
Email	_

3

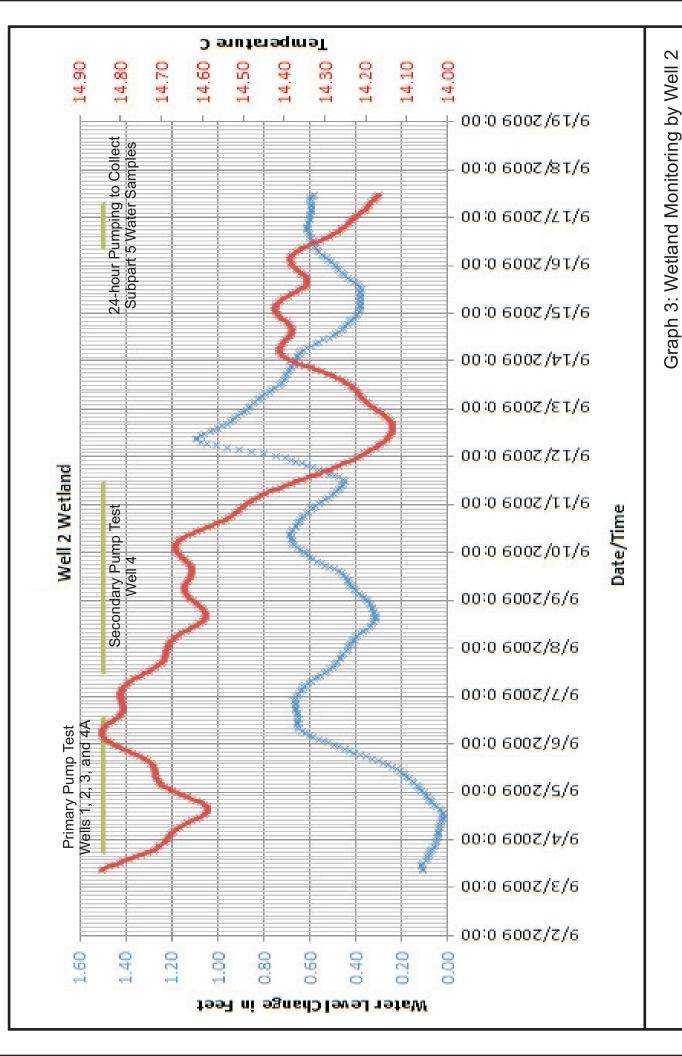
Please send information to:


~

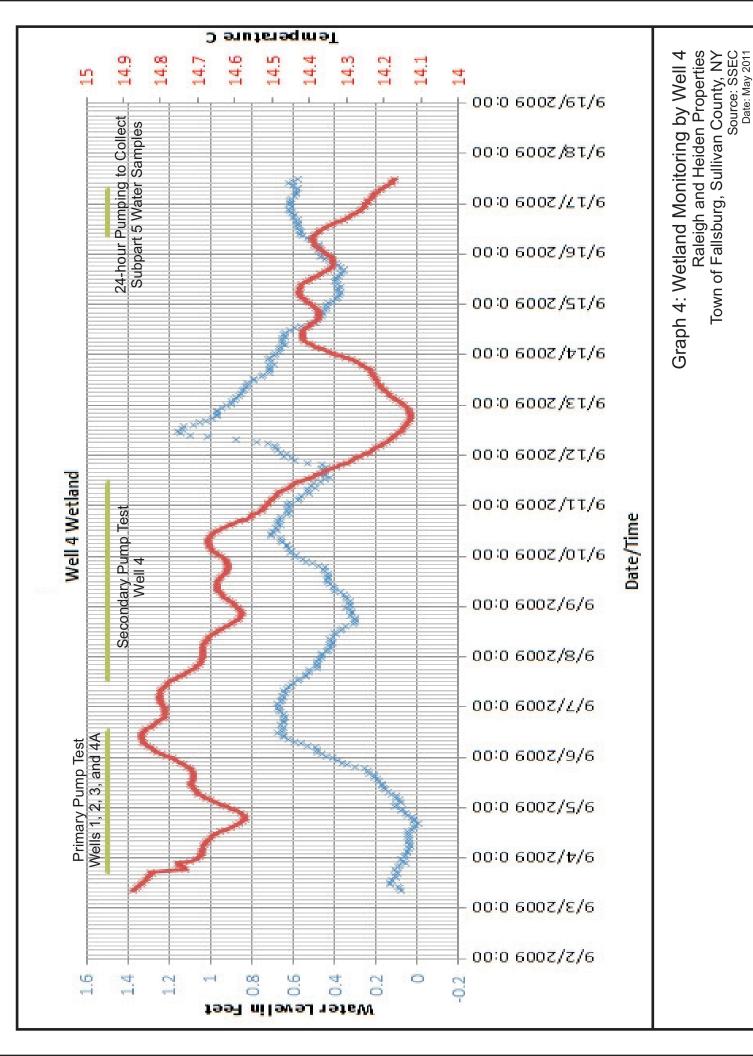
Tim Miller Associates, Inc. 10 North Street Cold Spring, New York 10516 Phone (845) 265-4400 Fax (845) 265-4418 Email: <u>mfisher@timmillerassociates.com</u> or jdahlgren@timmillerassociates.com


Appendix E

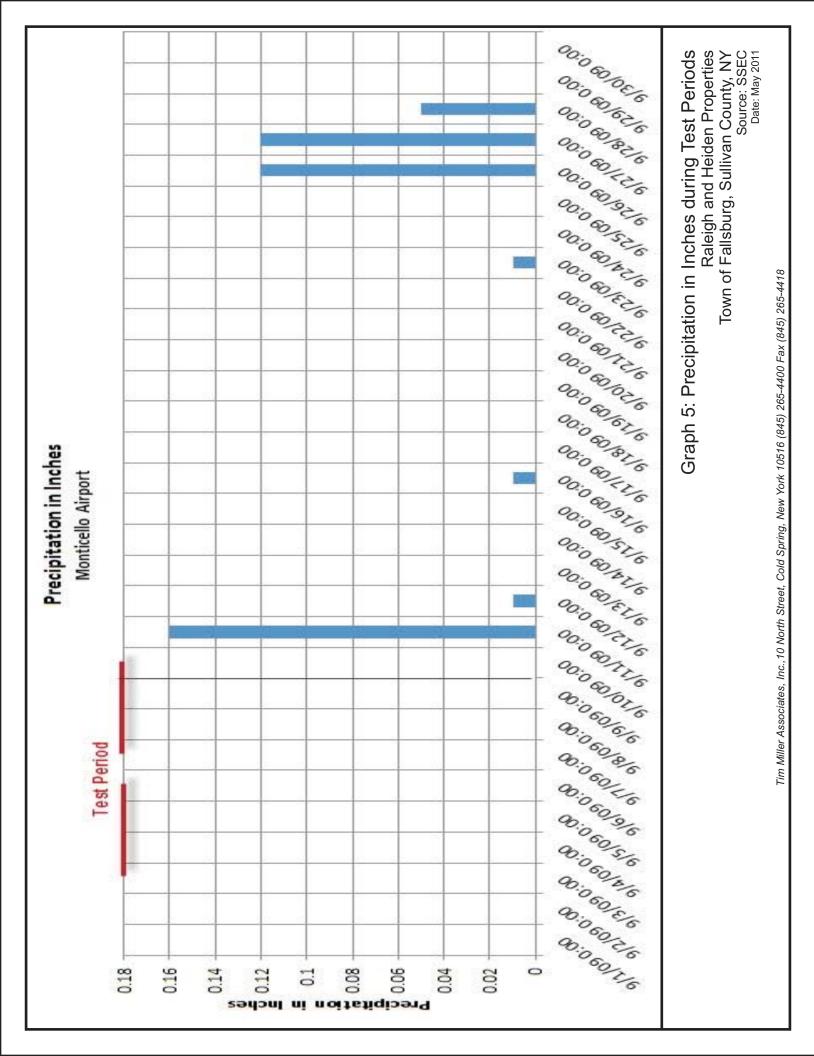
Charts

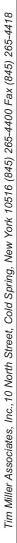

Tim Miller Associates, Inc., 10 North Street, Cold Spring, New York 10516 (845) 265-4400 Fax (845) 265-4418

Town of Fallsburg, Sullivan County, NY Source: SSEC

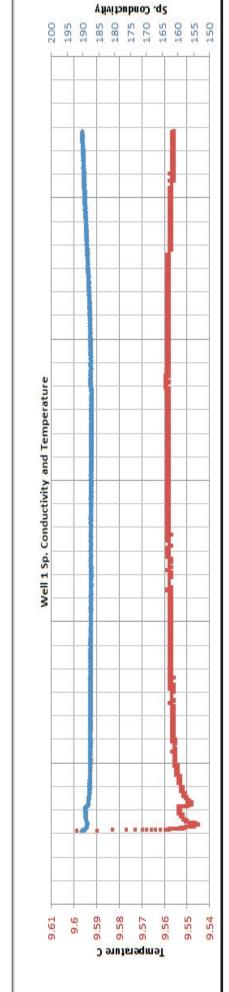

Town of Fallsburg, Sullivan County, NY Source:SSEC

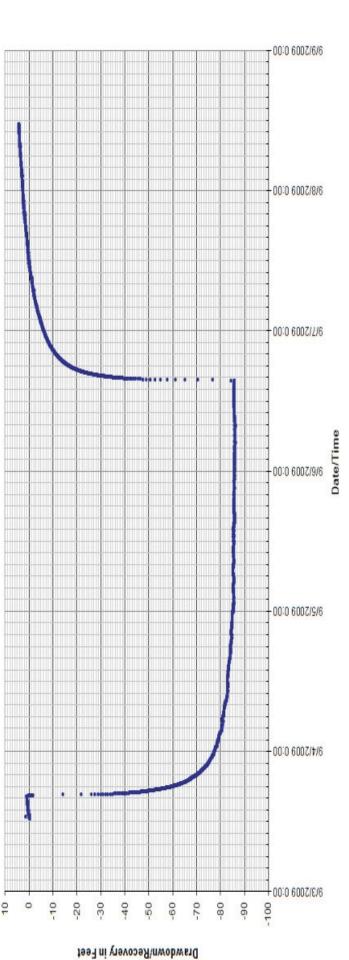
Tim Miller Associates, Inc., 10 North Street, Cold Spring, New York 10516 (845) 265-4400 Fax (845) 265-4418

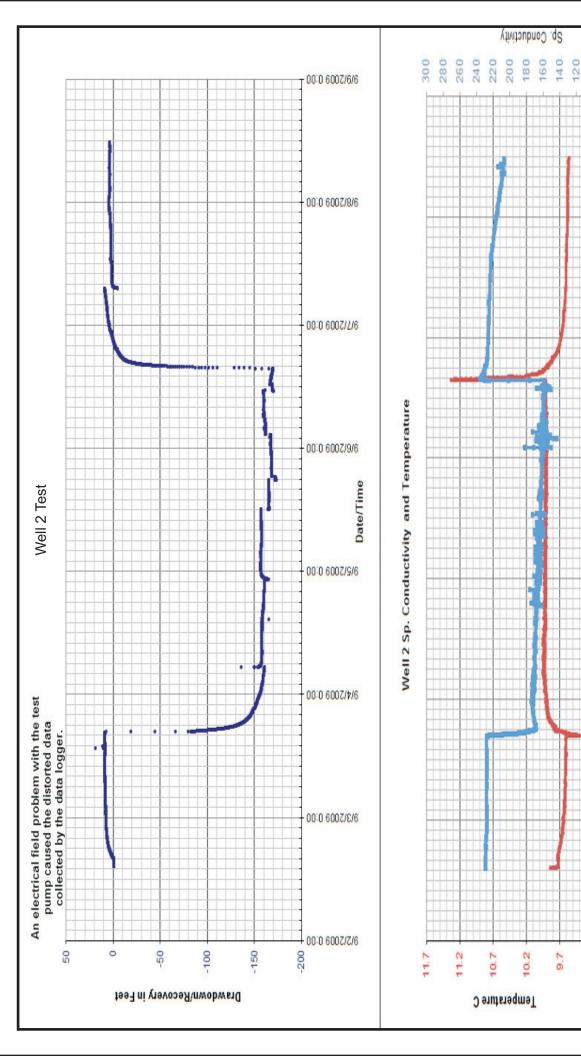



Town of Fallsburg, Sullivan County, NY Source: SSEC

Tim Miller Associates, Inc.,10 North Street, Cold Spring, New York 10516 (845) 265-4400 Fax (845) 265-4418




Tim Miller Associates, Inc.,10 North Street, Cold Spring, New York 10516 (845) 265-4400 Fax (845) 265-4418



Graph 6: Well 1 Test Raleigh and Heiden Properties Town of Fallsburg, Sullivan County, NY Source: SSEC Date: May 2011

Well 1 Test

Raleigh and Heiden Properties

Graph 7: Well 2 Test

100

00:0 6002/6/6

8/8/2009 0:00

00:0 6007/2/6

00:0 6002/9/6

9/6/2009 0:00

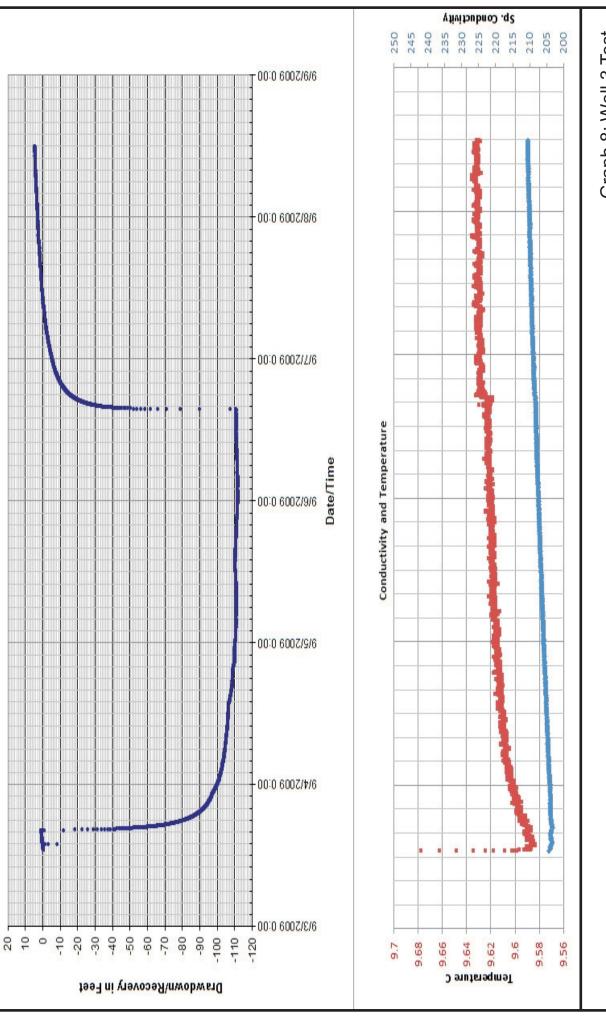
6/4/2009 0:00

9/3/2009 0:00

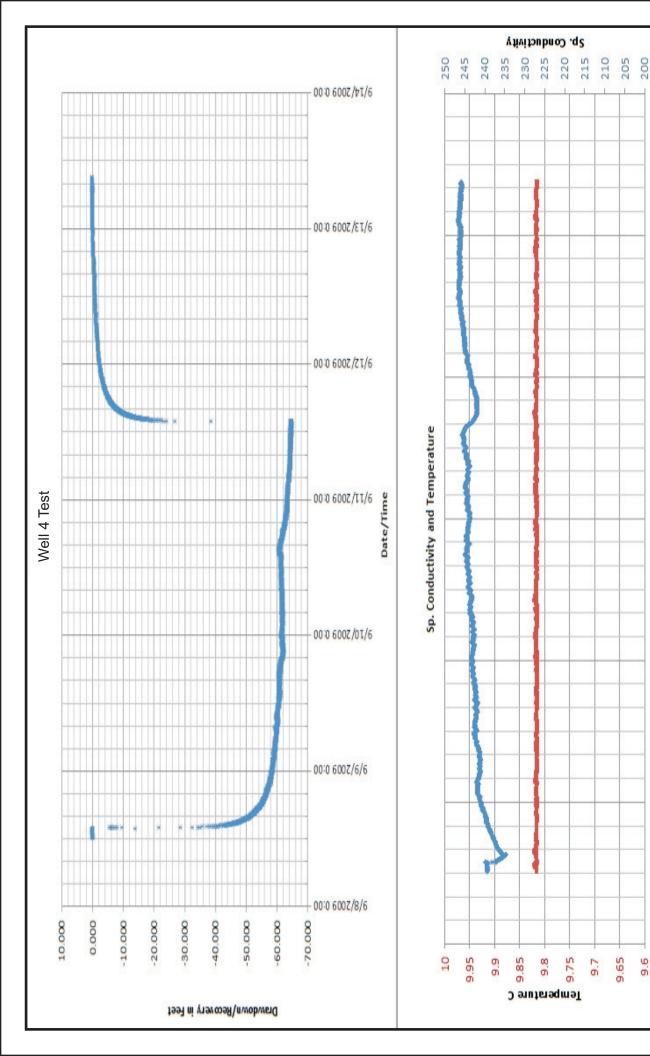
6/5/5008 0:00

9.2

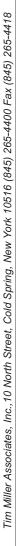
Date/Time


Town of Fallsburg, Sullivan County, NY

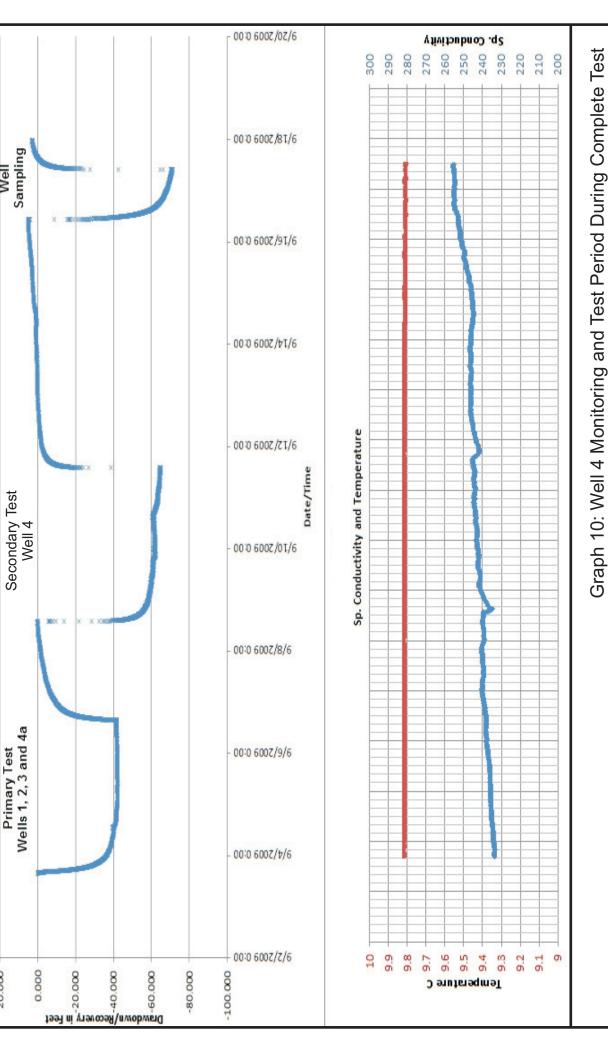
Source: SSEC Date: May 2011


Tim Miller Associates, Inc., 10 North Street, Cold Spring, New York 10516 (845) 265-4400 Fax (845) 265-4418

Graph 8: Well 3 Test Raleigh and Heiden Properties Town of Fallsburg, Sullivan County, NY Source: SSEC Date: May 2011



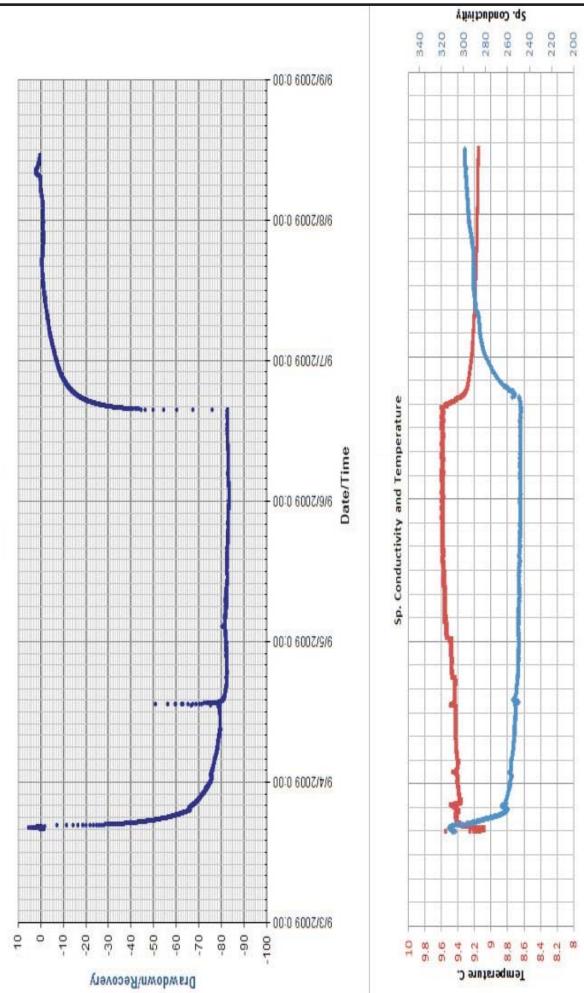
Well 3 Test



Tim Miller Associates, Inc., 10 North Street, Cold Spring, New York 10516 (845) 265-4400 Fax (845) 265-4418

Graph 9: Well 4 Test Raleigh and Heiden Properties Town of Fallsburg, Sullivan County, NY Source: SSEC Date: May 2011

Town of Fallsburg, Sullivan County, NY Source: SSEC Date: May 2011 Raleigh and Heiden Properties


Sampling Well

Well 4 Monitoring and **Complete Testing**

20.000

Well 4A Test

Tim Miller Associates, Inc., 10 North Street, Cold Spring, New York 10516 (845) 265-4400 Fax (845) 265-4418

Graph 11: Well 4A Test Raleigh and Heiden Properties Town of Fallsburg, Sullivan County, NY Source: SSEC Date: May 2011

APPENDIX F

Analytical Reports and Table

Table 1 Raleigh and Heiden Properties Development Sub-Part 5 Analytical September 17, 2009

Parameter	Method	Standard	Well-1	Well-2	Well-3	Well-4	Well-4A	Units
Corrosivity (Langelier Index)	SM2330B	NA	-0.18	0.14	-0.61	-0.59	-1.4	Index Limit
1,1,1,2-Tetrachloroethane		5	<0.50	<0.50	<0.50	<0.50	< 0.50	ug/L
Trichloroethene		5	<0.50	<0.50	<0.50	<0.50	<0.50	ug/L
trans-1,3-Dichloropropene		5	<0.50	<0.50	<0.50	< 0.50	<0.50	ug/L
trans-1,2-Dichloroethene		5	<0.50	<0.50	<0.50	<0.50	<0.50	ug/L
Toluene		5	<0.50	2.3	1.4	<0.50	<0.50	ug/L
Tetrachloroethene		5	<0.50	<0.50	<0.50	<0.50	<0.50	ug/L
tert-Butylbenzene		5	<0.50	<0.50	<0.50	<0.50	<0.50	ug/L
Styrene		5	<0.50	<0.50	<0.50	<0.50	<0.50	ug/L
sec-Butylbenzene		5	<0.50	<0.50	<0.50	<0.50	<0.50	ug/L
o-Xylene		5	<0.50	<0.50	<0.50	<0.50	<0.50	ug/L
Naphthalene		5	<0.50	<0.50	<0.50	<0.50	<0.50	ug/L
n-Propylbenzene		5	<0.50	<0.50	<0.50	<0.50	<0.50	ug/L
n-Butylbenzene	_	5	<0.50	<0.50	<0.50	<0.50	<0.50	ug/L
Methylene Chloride	_	5	<1.0	<1.0	<1.0	<1.0	<1.0	ug/L
Methyl-tert-butyl-ether (MTBE)	_	10	<1.0	<1.0	<1.0	<1.0	<1.0	ug/L
m&p-Xylene	_	5	<0.50	<0.50	<0.50	<0.50	<0.50	ug/L
Isopropylbenzene	_	5	< 0.50	<0.50	<0.50	< 0.50	< 0.50	ug/L
Hexachlorobutadiene	4	5	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	ug/L
Ethylene Dibromide	4	0.05	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	ug/L
Ethylbenzene	-	5	<0.50	<0.50	<0.50	<0.50	<0.50	ug/L
Dichlorodifluoromethane	_		< 0.50	<0.50	<0.50	<0.50	< 0.50	ug/L
Bromodichloromethane	4	80 ^c	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	ug/L
Dibromomethane	4	5	<0.50	<0.50	<0.50	<0.50	<0.50	ug/L
cis-1,3-Dichloropropene	4	5	<0.50	<0.50	<0.50	<0.50	<0.50	ug/L
cis-1,2-Dichloroethene	_	5	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	ug/L
Chloromethane	-	5	<0.50	<0.50	<0.50	< 0.50	< 0.50	ug/L
Chloroform	_	80 ^c	< 0.50	< 0.50	<0.50	< 0.50	< 0.50	ug/L
Chloroethane	_	5	<0.50	<0.50	<0.50	<0.50	<0.50	ug/L
Dibromochloromethane		80 ^C	<0.50	<0.50	<0.50	<0.50	<0.50	ug/L
Bromochloromethane	EPA 502.2	5	<0.50	<0.50	<0.50	<0.50	<0.50	ug/L
Trichlorofluoromethane	_	5	< 0.50	< 0.50	<0.50	< 0.50	< 0.50	ug/L
Chlorobenzene	_	5	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	ug/L
Carbon tetrachloride	_	5	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	ug/L
Bromomethane	_	5	< 0.50	<0.50	<0.50	<0.50	<0.50	ug/L
Bromoform	_	80 ^c	< 0.50	<0.50	<0.50	< 0.50	< 0.50	ug/L
Bromobenzene	_	5	<0.50	<0.50	<0.50	<0.50	<0.50	ug/L
Benzene	_	5	< 0.50	<0.50	<0.50	< 0.50	< 0.50	ug/L
4-Isopropyltoluene	_	5	< 0.50	<0.50	< 0.50	< 0.50	< 0.50	ug/L
4-Chlorotoluene	_	5	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	ug/L
2-Chlorotoluene	-	5	< 0.50	<0.50	<0.50	<0.50 <0.50	<0.50	ug/L
2,2-Dichloropropane 1,4-Dichlorobenzene	-	5	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50	<0.50 <0.50	ug/L
1,3-Dichloropropane	-	5	<0.50	<0.50	<0.50	<0.50	<0.50	ug/L
1,3-Dichlorobenzene	-	5	<0.50	<0.50	<0.50	<0.50	<0.50	ug/L
,	-	5	<0.50	<0.50	<0.50	<0.50	<0.50	ug/L
1,3,5-Trimethylbenzene 1,2-Dichloropropane	-	5	<0.50	<0.50	<0.50	<0.50	<0.50	ug/L ug/L
1,2-Dichloroethane	-	5	<0.50	<0.50	<0.50	<0.50	<0.50	ug/L ug/L
1,2-Dichlorobenzene	1	5	<0.50	<0.50	<0.50	<0.50	<0.50	ug/L ug/L
1,2-Dibromo-3-chloropropane	1	0.2	<0.50	<0.50	<0.50	<0.50	<0.50	ug/L ug/L
1.2.4-Trimethylbenzene	1	5	<0.50	<0.50	<0.50	<0.50	<0.50	ug/L ug/L
1,2,4-Trichlorobenzene	1	5	<0.50	<0.50	<0.50	<0.50	<0.50	ug/L
1,2,3-Trichloropropane	1	5	<0.50	<0.50	<0.50	<0.50	<0.50	ug/L
1,2,3-Trichlorobenzene	1	5	<0.50	<0.50	<0.50	<0.50	<0.50	ug/L
1,1-Dichloropropene	1	5	<0.50	<0.50	<0.50	<0.50	<0.50	ug/L
1,1-Dichloroethene	1	5	<0.50	<0.50	<0.50	<0.50	<0.50	ug/L
1,1-Dichloroethane	1	5	<0.50	<0.50	<0.50	< 0.50	<0.50	ug/L
1,1,2-Trichloroethane	1	5	< 0.50	<0.50	<0.50	< 0.50	< 0.50	ug/L
1,1,2,2-Tetrachloroethane	1	5	< 0.50	<0.50	<0.50	< 0.50	< 0.50	ug/L
1,1,1-Trichloroethane	1	5	< 0.50	<0.50	<0.50	< 0.50	< 0.50	ug/L
Vinyl chloride	1	2	<0.50	<0.50	<0.50	< 0.50	< 0.50	ug/L
Iron (Fe)		300	2,600	1,000	<100	<100	320	ug/L
Manganese (Mn)	1	300	100	67	<15	<15	110	ug/L
Iron & Manganese (Combined)	EPA 200.7	500	2,700	1,067	<115	<115	430	ug/L
	1	20,000 ^B	35,000	34,000	26,000	28,000	33,000	ug/L
Sodium (Na)								

Table 1 Raleigh and Heiden Properties Development Sub-Part 5 Analytical September 17, 2009

Bis/2-ethy/hexy/lphthalate 6 -0.61 0.82 -0.61 -0.61 -0.61 -0.61 -0.61 -0.61 -0.61 ugl. Hexachloroberzene Hexachlorocyclopertadiene 5 -0.61 -0.01 -0.011 -0.011 -0.042 -0.022 -0.022 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 <th>Parameter</th> <th>Method</th> <th>Standard</th> <th>Well-1</th> <th>Well-2</th> <th>Well-3</th> <th>Well-4</th> <th>Well-4A</th> <th>Units</th>	Parameter	Method	Standard	Well-1	Well-2	Well-3	Well-4	Well-4A	Units
Natenic (As) Particle (As) Calification (As) <thcalification (as)<="" th=""> Cal</thcalification>	Silver (Ag)		100	<1.0	<1.0	<1.0	<1.0	<1.0	ug/L
Benjian (Be) 4 -1.0 -1.0 -1.0 -1.0 -1.0 up1. Chrominn (C) S -1.0 -1.0 -1.0 -1.0 -1.0 up1. Chrominn (C) S -1.0 -1.0 -2.0 -2.0 up1. Chrominn (C) S -2.0 -2.0 -2.0 up1. Maintory (Sb) S -2.0 -2.0 -2.0 up1. Banun (B) EPA 200 50 -5.0				1.7	3.0	<1.0	<1.0	<1.0	ug/L
Gamman (Cd) FA 2008 5									
Dimomin (G) Shore (G) Notes (W) Notes (W) N		_							×
Cooper (i)u) Number of the second secon		EDA 200 9							×
Nichal (N) Nich (N) Nich (N) Nich (R)		EPA 200.0							
Animalon (T) e20 e20 <t< td=""><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td>×</td></t<>		-							×
Thaillion (T) Partial (T)		-							
Selentum (Se) EPA 200 60 -6.0 -6.0 -6.0 -6.0 -9.0 upl. Nardrages, Calcum (as CaCo.) SM23408 100***********************************			2						×
Marcary, High EPA 26:1 2 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20 -0.25	Barium (Ba)		2,000	450	37	150	97	180	ug/L
Hardmass, Calcium (as CaCO.) SM2240B 160* 2.4 16 4.1 32 33 mgL Nirtle as N Total Nirtle an Nirtle PA 0.25 -0.25 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ug/L</td></t<>									ug/L
Nirres as N Description Description PA 300 Page 30									
Nintie as N 1 60.25 60.26 60.25 70.25 70.25 Suffate Chorde 250 5.7 5.7 6.3 6.6 8.9 mgL Color SM2120B 15 Units 10 7.8 10 8.2 20 mgL Color SM2120B 15 Units 10 1.0	, (0)	SM2340B							•
Total Nintes and Ninte EPA 300 10 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50<									•
Sulfate Sulfate 250 5.7 5.7 6.3 5.6 8.9 mgl. Color SM1208 15 Units 10 15 10 8.2 20 mgl. Color SM1208 5 22 37 4.4 1.1 13 NTU Odor SM1208 3 Units 1.0		554.000							×
Chloride SM210B 150 10 7.8 10 8.2 20 mpL Turbidity SM210B 150 15 12 37 4.4 1.1 13 NTU Alkalinity, Total as CaCO, SM2150B 30 uits 1.0		EPA 300	-						
Color SM2120B 15 Units 10 15 10 5.0 10 Pt/Co Odor SM2150B 3 Units 1.0		-							×
Turbidity SM2130B 5 22 37 4.4 1.1 13 NTU Odor SM2150B 3 Units 1.0		SM2120B							
Odor SM2150B 3 Units 1.0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
Alkalinity, Total as CaCO ₂ SM2300 ** 88 96 87 84 88 mpdL Opande (trole) SM4500 CN E 0.2 0.012 0.019 <0.010									
Solids, Total Dissolved (TDS) SMA2540C NA 120 120 140 140 150 mgL Cyande (total) SMA500 CN E 0.2 <0.010	Alkalinity, Total as CaCO ₃		**	88	96	87	84	88	mg/L
Cyande (total) SM4500 CN E 0.2 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <	Solids, Total Dissolved (TDS)	SM2540C	NA	120	120	140	140	150	mg/L
Filonde SM4500 F C 2.2 -0.20 -0.20 -0.20 -0.20 -0.20 mgL Collorm, Feoal SM0922D NA* <10		SM4500 CN E	0.2	0.012		<0.010	<0.010	<0.010	•
pH 4500H+B ** 8.66 8.88 7.93 8.10 7.25 SU Coliform, Total SM9223 NA* <1.0									
Coliform, Fecal SM0222D NA* C10 CFU/10 mL Econtorm SM9222 NA* C10 C10 C10 C10 C10 C10 CFU/10 mL Atrazine SM9215B NA**** C10 C10.22 c0.022 c0.025 c0.025 c0.025									
Caliform SM8223 NA* <to><to><to><to><to><to><to><to><to><to< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></to<></to></to></to></to></to></to></to></to></to>									
E. Coliform SM8223 NA* <to><1.0</to>									
Heterotypic Plate Count SM9215B NA**** 170 8.0 10 77 120 CFU/mL Alachior Arzaine 2 <0.033									
Alachier Dark (2)									
Atrazine 3 <0.022 <0.022 <0.022 <0.022 <0.022 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <td></td> <td>011102103</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		011102103							
Benzo (a) pyrene Bis/c2-ethylwsyl)ahthalate 0.2 <0.029 <0.029 <0.029 <0.029 <0.029 <0.029 <0.029 <0.029 <0.029 <0.029 <0.029 <0.029 <0.029 <0.029 <0.029 <0.029 <0.029 <0.029 <0.029 <0.029 <0.029 <0.029 <0.029 <0.029 <0.029 <0.029 <0.029 <0.029 <0.029 <0.021 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <		-							×
Di(2-ethylnexy)adipate 5 <0.61 <0.61 <0.61 <0.61 <0.61 ugl, Hexachlorocyclopentadiene Butachlor <0.041	Benzo (a) pyrene		0.2	<0.029	<0.029	< 0.029	<0.029	<0.029	
Hexachlorobenzene Hexachlorocyclopentadiene Butachlor EPA 525.2 1 <0.041 <0.041 <0.041 <0.041 <0.041 <0.041 <0.041 <0.041 <0.041 <0.041 <0.041 <0.041 <0.041 <0.041 <0.041 <0.041 <0.041 <0.041 <0.041 <0.041 <0.041 <0.041 <0.041 <0.041 <0.041 <0.041 <0.041 <0.041 <0.041 <0.041 <0.041 <0.041 <0.041 <0.041 <0.041 <0.041 <0.041 <0.041 <0.041 <0.041 <0.041 <0.041 <0.041 <0.041 <0.041 <0.041 <0.041 <0.041 <0.042 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <td>Bis(2-ethylhexyl)phthalate</td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>×</td>	Bis(2-ethylhexyl)phthalate	_							×
Hexachlorocyclopentadiene EPA 53.2 5 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.031 <0.031		_							•
Butachlor 5 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.032 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <td></td> <td>EPA 525.2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>×</td>		EPA 525.2							×
Simazine 4 <0.035 <0.036 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.021 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.023 <0.033 <0.031 <0.031 <0.031 <0.031 <0.031 <0.031 <0.031 <0.031 <0.031 <0.031 <0.031 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.033 <0.031 <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		-							
Metolachlor 5 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.022 <0.022 <0.022 <0.022 <0.022 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025<		-							
Metribuzin 5 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.031 <0.031 <0.031 <0.031 <0.031 <0.031 <0.031 <0.031 <0.031 <0.031 <0.031 <0.031 <0.031 <0.031 <0.031 <0.031 <0.031 <0.031 <0.031 <0.031 <0.031 <0.031 <0.031 <0.031 <0.031 <0.031 <0.031 </td <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>×</td>		-							×
Bromate EPA 300.1B 10 <2.6 <2.6 <2.6 <2.6 <2.6 <2.6 ug/L 3Hydroxycarb0furan Oxamyl <		-	5						
3-Hydroxycarbofuran 5 <0.31 <0.31 <0.31 <0.31 ug/L Oxamyl Carbofuran 5 <0.35	Propachlor		5	<0.025	<0.025	< 0.025	< 0.025	<0.025	ug/L
S <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.35 <0.		EPA 300.1B							
Carbofuran 40 <0.43 <0.43 <0.43 <0.43 <0.43 <0.43 <0.43 <0.43 <0.43 <0.43 <0.43 <0.43 <0.43 <0.43 <0.43 <0.43 <0.43 <0.43 <0.43 <0.43 <0.43 <0.43 <0.43 <0.43 <0.43 <0.43 <0.43 <0.43 <0.43 <0.43 <0.43 <0.43 <0.43 <0.43 <0.43 <0.43 <0.43 <0.43 <0.43 <0.43 <0.43 <0.43 <0.43 <0.43 <0.43 <0.43 <0.43 <0.43 <0.43 <0.43 <0.43 <0.43 <0.43 <0.43 <0.43 <0.43 <0.43 <0.43 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.31 <0.31 <0.31 <0.31 <0.31 <0.31 <0.31 <0.31 <0.303 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030		_							×
Aldicarb 3 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.40 <0.40		_	-						-
Aldicarb sulfone EPA 531.1 2 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.0011 <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>×</td>		-							×
Aldicarb sulfoxide 4 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.21 <0.31 <0.31 <0.31 <0.31 <0.31 <0.31 <0.31 <0.31 <0.31 <0.31 <0.31 <0.31 <0.31 <0.31 <0.31 <0.31 <0.31 <0.31 <0.31 <0.31 <0.31 <0.31 <0.31 <0.31 <0.31 <0.31 <0.31 <0.31 <0.31 <0.31 <0.31 <0.31 <0.31 <0.31 <0.31 <0.31 <0.31 <0.31 <0.31 <0.31 <0.31 <0.31 <0.31 <0.31 <0.31 <0.31 <0.31 <0.3021 <0.0011 <0.0011 <0.0011 <0.0011 <0.		EPA 531.1							-
S <0.31 <0.31 <0.31 <0.31 <0.31 <0.31 ug/L Methomyl 5 <0.49		-							
Methomyl 5 <0.49 <0.49 <0.49 <0.49 <0.49 <0.49 ug/L 1,2-Dibromo-3-chloropropane EPA 504.1 0.2 <0.0030		-							
Ethylene Dibromide EPA 504.1 0.05 <0.0073 <0.0072 <0.0073 <0.0073 <0.0072 ug/L Aldrin Aldrin 5 <0.0014			5						•
S <0.0014 <0.0014 <0.0014 <0.0014 ug/L Chiordane Endrin <0.011	1,2-Dibromo-3-chloropropane	EPA 504.1	0.2	<0.0030	<0.0030	<0.0031	< 0.0030	< 0.0030	ug/L
2 <0.11 <0.12 <0.11 <0.11 ug/L Endrin HCH-gamma (Lindane) HCH-gamma (Lindane) Q <0.0021		EPA 504.1							
Endrin 2 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0021 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0015 <0.0015 <0.0016 <0.0016 <0.0016 <0.0016 <0.0016 <0.0017 <0.0017 <0.0015 <0.0017 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0016 <0.0016 <0.00		_							×
HCH-gamma (Lindane) 0.2 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0023 <0.0015 <0.0015 <0.0015 <0.0016 <0.0016 <0.0016 <0.0016 <0.0016 <0.0017 <0.0017 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.015 <0.0015 <0.0015 <0.015 <0.017		_							
Heptachlor 0.4 <0.0059 <0.0061 <0.0059 <0.0059 ug/L Heptachlor epoxide Methoxychlor 0.2 <0.0016		_							×
Heptachlor epoxide 0.2 <0.0016 <0.0016 <0.0016 <0.0016 <0.0016 ug/L Methoxychlor 0.id <0.0074		-							
Methoxychlor 40 <0.0074 <0.0074 <0.0074 <0.0074 <0.0074 <0.0074 <0.0074 <0.0074 <0.0074 <0.0074 <0.0074 <0.0074 <0.0074 <0.0074 <0.0074 <0.0074 <0.0074 <0.0074 <0.0074 <0.0074 <0.0074 <0.0074 <0.0074 <0.0074 <0.0074 <0.0074 <0.0074 <0.0074 <0.0074 <0.0074 <0.0074 <0.0074 <0.0074 <0.0074 <0.0074 <0.0074 <0.0074 <0.0074 <0.0074 <0.0074 <0.0074 <0.0074 <0.0074 <0.0074 <0.0074 <0.0074 <0.0074 <0.0074 <0.0074 <0.0074 <0.0074 <0.0074 <0.0075 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0148 <0.048 <0.0148 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.0148 <0.014		-							
5 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 ug/L PCB-1016 PCB-1016 0.5 <0.064	Methoxychlor	1							×
PCB-1016 EPA 508 0.5 <0.064 <0.064 <0.065 <0.064 <0.064 ug/L PCB-1221 0.5 <0.048	Dieldrin	1							-
DCB-1232 0.5 <0.092 <0.092 <0.092 <0.092 ug/L PCB-1242 0.5 <0.13	PCB-1016	EPA 508	0.5	< 0.064	< 0.064	< 0.065	< 0.064	<0.064	×
DCB-1242 0.5 <0.13 <0.13 <0.13 <0.13 ug/L PCB-1248 0.5 <0.046	PCB-1221	_							×
DCB-1248 0.5 <0.046 <0.047 <0.046 <0.046 ug/L PCB-1254 0.5 <0.048	PCB-1232	4							×
PCB-1254 0.5 <0.048 <0.049 <0.048 <0.048 ug/L PCB-1260 0.5 <0.047	PCB-1242	4							-
PCB-1260 0.5 <0.047 <0.048 <0.047 <0.047 ug/L Toxaphene 3 <0.055		4							
3 <0.055 <0.056 <0.055 <0.055 ug/L		-							
		-							
	Polychlorinated biphenyls, Total	-	0.5	<0.055	<0.055	<0.056	<0.055	<0.055	ug/L ug/L

Table 1 **Raleigh and Heiden Properties Development** Sub-Part 5 Analytical September 17, 2009

Parameter	Method	Standard	Well-1	Well-2	Well-3	Well-4	Well-4A	Units
2,4-D		50	< 0.037	<0.037	< 0.036	< 0.036	< 0.036	ug/L
Dalapon		5	<1.0	<1.0	<0.98	<0.96	<0.96	ug/L
Dinoseb		7	<0.15	<0.15	<0.15	<0.14	<0.14	ug/L
Pentachlorophenol	EPA 515.1	1	< 0.038	<0.038	< 0.037	< 0.037	< 0.037	ug/L
Picloram		5	< 0.077	<0.078	< 0.075	< 0.074	<0.074	ug/L
Dicamba		5	< 0.085	<0.086	<0.083	<0.082	<0.082	ug/L
Silvex (2,4,5-TP)		10	< 0.060	<0.061	< 0.059	< 0.058	<0.058	ug/L
Chlorite	EPA 300.1B	1,000	<20	<20	<20	<20	<20	ug/L
Radium 226	EPA 903.0	5 Combined	0.59J	0.25J	0.10J	<0.15	0.39J	pCi/L
Radium 228	EPA 904.0	5 Combined	<0.28	0.43J	0.03J	<-0.07	<0.15	pCi/L
Uranium	ASTM 5174-91	30	3.88	5.09	5.72	3.65	2.46	ug/L
Gross alpha	EPA 900	15	5.3	5.5	5.1	2.7J	1.6J	pCi/L
Gross beta	EFA 900	*****	4.6	4.6	2.0J	3.4J	2.5J	pCi/L
Radon	SM7500-RnB	NVA	1,330(+/-40)	1,360(+/-40)	1,960(+/-40)	830(+/-40)	1,650(+/-40)	pCi/L

Notes: ^A - Guidance value to determine if the water is hard and is in need for a water softner system

and/or a special septic engineer requirements for disposal of calcium build-up.

^B - Water containing more than 20 mg/L (or 20,000 ug/L) of sodium should not be used for drinking by people on severely restricted sodium diets.

Water containing more than 270 mg/L (or 270,000) should not be used for drinking by people on moderately restriced sodium diets.

^C - Total Trihalomethanes can not exceed 80 ppb, considered a disinfection byproduct.

* - total coliform and e-coli and fecal coliform can not be present in water supply systems that are currently supplying water to the puplic.

These samples collected for these spefic wells are raw water samples before any treatment.

** - Alkalinity, Total as CaCO3 ranging from 120-240 mg/L should have a pH of approximatly 7.0. *** - Turbidity is measured by entery points for surface water and groundwater directly influenced by surface water.

It is assumed that these wells are not influenced but surface water.

- Four Millirens/year - concentrations determined by Health Department.

***** - If chlorine is used as the disinfectant, a free chlorine residual determination shall be made at the same time and location that the sample is collected for total coliform analysis. Monitoring for heterotrophic bacteria may be substituted for free chlorine residuals. A heterotrophic plate count result equal to or less than 500 colonies per milliliter is considered to be equivalent to a measurable free chlorine residual.

****** - Four millirems per year as the annual dose equivalent to the total body or any internal organ.

NA - Not Applicable

mf/L - million fibers per liter

ug/L - micrograms per liter (ppb-parts per billion).

mg/L - milligrams per liter (ppm-parts per million).

NSB - no asbestos detected

pCi/L - picocuries per liter

NVA - no value available

ANALYTICAL REPORT

Job Number: 420-30027-1

Job Description: Tim Miller Associates, Inc.

For: Tim Miller Associates, Inc. 10 North Street Cold Spring, NY 10516

Attention: Ms. Maureen Fisher

Sobra Ba

Debra Bayer Customer Service Manager dbayer@envirotestlaboratories.com 11/25/2009

The test results in this report meet all NELAP requirements unless specified within the case narrative. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. EnviroTest Laboratories Inc. certifies that the analytical results contained herein apply only to the samples tested as received by our laboratory. All questions regarding this report should be directed to the EnviroTest Customer Service Representative.

EnviroTest Laboratories, Inc. Certifications and Approvals: NELAP Accredited, NYSDOH 10142, NJDEP NY015, CTDOPH PH-0554, EPA NY00049.

Comments

No additional comments.

Receipt

All samples were received in good condition within temperature requirements.

GC VOA

Method 502.2: The laboratory control standard (LCS) for batch 34367 exceeded control limits for the analytes indicated by an asterisk (*) on the results form. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported with confidence of no false negatives.

No other analytical or quality issues were noted.

Metals

No analytical or quality issues were noted.

General Chemistry

No analytical or quality issues were noted.

Biology

No analytical or quality issues were noted.

METHOD SUMMARY

Client: Tim Miller Associates, Inc.

Job Number: 420-30027-1

htrix: Water P Metals by 200.7 200 Series Drinking Water Prep Determination Step PMS Metals by 200.8 200 Series Drinking Water Prep Determination Step	EnvTest EnvTest EnvTest EnvTest	EPA 200.7 Re	ev 4.4 EPA 200
200 Series Drinking Water Prep Determination Step PMS Metals by 200.8	EnvTest EnvTest EnvTest		
-	EnvTest	FPA 200.8	
			EPA 200
ercury in Water by CVAA Digestion for CVAA Mercury in Waters	EnvTest EnvTest	EPA 245.1	EPA 245.1
ions by Ion Chromatography	EnvTest	MCAWW 300	.0
ions by Ion Chromatography	EnvTest	MCAWW 300	.0
latile Organic Compounds by Purge and Trap (Preserved)	EnvTest	EPA 502.2	
PA 504.1 EDB		EPA 504.1	
A 508 Chlorinated Pesticides in Water		EPA 508	
A 515 Chlorinated Acids		EPA 515	
A 525.2 Semivolatile Organics		EPA 525.2	
A 531.1 Carbamate Pesticides in Drinki		STL-SAV 531	.1
A 900 Series GA/GB/RA226/RA228/Gamma		STL-RCH 900)
anium		STL-STL EPA	
lor, Colorimetric	EnvTest	SM18 SM 212	20B
rbidity	EnvTest	SM20 SM 213	60B
lor, Threshold Test	EnvTest	SM20 SM 215	60B
calinity, Titration Method	EnvTest	SM18 SM 232	20B
rrosivity LSI Calculation	EnvTest	SM20 SM 233	60B
rdness by Calculation	EnvTest	SM20 SM 234	0B
tal Dissolved Solids (Dried at 180 °C)	EnvTest	SM18 SM 254	OC
anide, Total: Colorimetric Method Cyanide: Distillation	EnvTest EnvTest	SM18 SM 450	0 CN E SM18 SM 4500 CN C
ioride (Ion-selective Electrode)	EnvTest	SM18 SM 450	0 F C
	EnvTest	SM19 SM 450	00 H+ B
terotrophic Plate Count	EnvTest	SM18 SM 921	5B
mbrane Filter Technique - Fecal Coliform Procedure	EnvTest	SM18 SM 922	2D
tal Coliform and Escherichia coli by Colilert - Quantity Tray	EnvTest	SMWW SM 92	223
eneral Sub Contract Method		Subcontract	

Lab References:

=

EnvTest = EnviroTest

EnviroTest Laboratories, Inc.

METHOD SUMMARY

Client: Tim Miller Associates, Inc.

Job Number: 420-30027-1

Description Lab Location Method Preparation Method

Method References:

EPA = US Environmental Protection Agency

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

SM18 = "Standard Methods For The Examination Of Water And Wastewater", 18th Edition, 1992.

SM19 = "Standard Methods For The Examination Of Water And Wastewater", 19Th Edition, 1995."

SM20 = "Standard Methods For The Examination Of Water And Wastewater", 20th Edition."

SMWW = "Standard Methods for the Examination of Water and Wastewater"

STL-RCH = Severn Trent Laboratories, Richland, Facility Standard Operating Procedure.

STL-SAV = Severn Trent Laboratories, Savannah, Facility Standard Operating Procedure.

STL-STL = Severn Trent Laboratories, St. Louis, Facility Standard Operating Procedure.

SAMPLE SUMMARY

Client: Tim Miller Associates, Inc.

Job Number: 420-30027-1

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
420-30027-1	Raleigh Hotel Well 1	Water	09/17/2009 1030	09/17/2009 1231
420-30027-2	Raleigh Hotel Well 2	Water	09/17/2009 1015	09/17/2009 1231
420-30027-3	Raleigh Hotel Well 3	Water	09/17/2009 0945	09/17/2009 1231
420-30027-4	Raleigh Hotel Well 4	Water	09/17/2009 1130	09/17/2009 1231
420-30027-5	Raleigh Hotel Well 4A	Water	09/17/2009 1100	09/17/2009 1231

EnviroTest Laboratories, Inc.

Ms. Maureen Fisher Tim Miller Associates, Inc. 10 North Street Cold Spring, NY 10516

Client Sample ID:Raleigh Hotel Well 1Lab Sample ID:420-30027-1

Analyte	Result/Qualifier	Unit	NONE	NONE	Dilution
Method: SM 2330B		Date An	alyzed: 09/28	/2009 0914	
Langelier Index	-0.18	NONE	,		1.0

Ms. Maureen Fisher Tim Miller Associates, Inc. 10 North Street Cold Spring, NY 10516

Client Sample ID: Raleigh Hotel Well 1 Lab Sample ID: 420-30027-1

Analyte	Result/Qu	ualifier	Unit	RL	RL	Dilution
Method: 502.2			Date A	nalyzed: 09/1	9/2009 0318	
1,1,1,2-Tetrachloroethane	0.50	U	ug/L	0.50	0.50	1.0
Trichloroethene	0.50	U	ug/L	0.50	0.50	1.0
trans-1,3-Dichloropropene	0.50	U	ug/L	0.50	0.50	1.0
trans-1,2-Dichloroethene	0.50	U	ug/L	0.50	0.50	1.0
Toluene	0.50	U	ug/L	0.50	0.50	1.0
Tetrachloroethene	0.50	U	ug/L	0.50	0.50	1.0
tert-Butylbenzene	0.50	U	ug/L	0.50	0.50	1.0
Styrene	0.50	U	ug/L	0.50	0.50	1.0
sec-Butylbenzene	0.50	U	ug/L	0.50	0.50	1.0
o-Xylene	0.50	U	ug/L	0.50	0.50	1.0
Naphthalene	0.50	U	ug/L	0.50	0.50	1.0
N-Propylbenzene	0.50	U	ug/L	0.50	0.50	1.0
n-Butylbenzene	0.50	U	ug/L	0.50	0.50	1.0
Methylene Chloride	1.0	U	ug/L	1.0	1.0	1.0
Methyl tert-butyl ether	1.0	U	ug/L	1.0	1.0	1.0
m-Xylene & p-Xylene	0.50	U	ug/L	0.50	0.50	1.0
Isopropylbenzene	0.50	U	ug/L	0.50	0.50	1.0
Hexachlorobutadiene	0.50	U	ug/L	0.50	0.50	1.0
Ethylene Dibromide	0.50	U	ug/L	0.50	0.50	1.0
Ethylbenzene	0.50	U	ug/L	0.50	0.50	1.0
Dichlorodifluoromethane	0.50	U	ug/L	0.50	0.50	1.0
Bromodichloromethane	0.50	U	ug/L	0.50	0.50	1.0
Dibromomethane	0.50	U	ug/L	0.50	0.50	1.0
cis-1,3-Dichloropropene	0.50	U	ug/L	0.50	0.50	1.0
cis-1,2-Dichloroethene	0.50	U	ug/L	0.50	0.50	1.0
Chloromethane	0.50	U	ug/L	0.50	0.50	1.0
Chloroform	0.50	U	ug/L	0.50	0.50	1.0
Chloroethane	0.50	U	ug/L	0.50	0.50	1.0
Dibromochloromethane	0.50	U	ug/L	0.50	0.50	1.0
Bromochloromethane	0.50	U	ug/L	0.50	0.50	1.0
Trichlorofluoromethane	0.50	U	ug/L	0.50	0.50	1.0
Chlorobenzene	0.50	U	ug/L	0.50	0.50	1.0
Carbon tetrachloride	0.50	U	ug/L	0.50	0.50	1.0
Bromomethane	0.50	U	ug/L	0.50	0.50	1.0
Bromoform	0.50	U	ug/L	0.50	0.50	1.0
Bromobenzene	0.50	U	ug/L	0.50	0.50	1.0
Benzene	0.50	U	ug/L	0.50	0.50	1.0
4-Isopropyltoluene	0.50	U	ug/L	0.50	0.50	1.0
4-Chlorotoluene	0.50	U	ug/L	0.50	0.50	1.0
2-Chlorotoluene	0.50	U	ug/L	0.50	0.50	1.0

Ms. Maureen Fisher Tim Miller Associates, Inc. 10 North Street Cold Spring, NY 10516

Client Sample ID: Raleigh Hotel Well 1 Lab Sample ID: 420-30027-1

Analyte	Result/Qu	alifier	Unit	RL	RL	Dilution
2,2-Dichloropropane	0.50	U	ug/L	0.50	0.50	1.0
1,4-Dichlorobenzene	0.50	U	ug/L	0.50	0.50	1.0
1,3-Dichloropropane	0.50	U	ug/L	0.50	0.50	1.0
1,3-Dichlorobenzene	0.50	U *	ug/L	0.50	0.50	1.0
1,3,5-Trimethylbenzene	0.50	U	ug/L	0.50	0.50	1.0
1,2-Dichloropropane	0.50	U	ug/L	0.50	0.50	1.0
1,2-Dichloroethane	0.50	U	ug/L	0.50	0.50	1.0
1,2-Dichlorobenzene	0.50	U	ug/L	0.50	0.50	1.0
1,2-Dibromo-3-Chloropropane	0.50	U	ug/L	0.50	0.50	1.0
1,2,4-Trimethylbenzene	0.50	U	ug/L	0.50	0.50	1.0
1,2,4-Trichlorobenzene	0.50	U	ug/L	0.50	0.50	1.0
1,2,3-Trichloropropane	0.50	U	ug/L	0.50	0.50	1.0
1,2,3-Trichlorobenzene	0.50	U	ug/L	0.50	0.50	1.0
1,1-Dichloropropene	0.50	U	ug/L	0.50	0.50	1.0
1,1-Dichloroethene	0.50	U	ug/L	0.50	0.50	1.0
1,1-Dichloroethane	0.50	U	ug/L	0.50	0.50	1.0
1,1,2-Trichloroethane	0.50	U	ug/L	0.50	0.50	1.0
1,1,2,2-Tetrachloroethane	0.50	U	ug/L	0.50	0.50	1.0
1,1,1-Trichloroethane	0.50	U	ug/L	0.50	0.50	1.0
Vinyl chloride	0.50	U	ug/L	0.50	0.50	1.0
Method: 200.7 Rev 4.4			Date A	nalyzed:	09/24/2009 1134	
Prep Method: 200				repared:	09/22/2009 1005	
Fe	2600	g	ug/L	100	100	1.0
Mn	100	Ũ	ug/L	15	15	1.0
Na	35000		ug/L	5000	5000	1.0
Zn	180		ug/L	20	20	1.0
Method: 200.8			Date A	nalyzed:	09/28/2009 1400	
Prep Method: 200				repared:	09/22/2009 1011	
Ag	1.0	U	ug/L	1.0	1.0	1.0
Pb	1.7		ug/L	1.0	1.0	1.0
Arsenic	5.5		ug/L	1.0	1.0	1.0
Be	1.0	U	ug/L	1.0	1.0	1.0
Cadmium	1.0	U	ug/L	1.0	1.0	1.0
Chromium	4.9	•	ug/L	2.0	2.0	1.0
Cu	41		ug/L	2.1	2.1	1.0
Ni	4.3		ug/L	1.1	1.1	1.0
Sb	2.0	U	ug/L	2.0	2.0	1.0
TI	1.0	Ŭ	ug/L	1.0	1.0	1.0
Barium	450	2	ug/L	2.0	2.0	1.0
Method: 200.8			-	nalyzed:	10/01/2009 1225	

Ms. Maureen Fisher Tim Miller Associates, Inc. 10 North Street Cold Spring, NY 10516

Client Sample ID: Raleigh Hotel Well 1 Lab Sample ID: 420-30027-1

Analyte	Result/Qu	alifier	Unit	RL	I	RL	Dilution
Prep Method: 200	5.0		Date Pre		09/29/2009		1.0
Selenium	5.0	U	ug/L	5.0	:	5.0	1.0
Method: 245.1			Date Ana	09/21/2009			
Prep Method: 245.1	0.20	U	Date Pre	pared: 0.20	09/18/2009) 1415).20	1.0
Hg	0.20	U	ug/L				1.0
Method: SM 2340B			Date Ana	-	09/24/2009		
Calcium hardness as calcium carbonate	24		mg/L	2.5		2.5	1.0
Method: 300.0			Date Ana	lyzed:	09/18/2009	1211	
Nitrate as N	0.25	U	mg/L	0.25		0.25	1.0
Nitrite as N	0.25	U	mg/L	0.25		0.25	1.0
Sulfate	5.7		mg/L	5.0	ę	5.0	1.0
Method: 300.0			Date Ana	lyzed:	09/18/2009	1404	
Chloride	10		mg/L	1.5		1.5	1.0
Method: SM 2120B			Date Ana	lvzed:	09/18/2009	1245	
Color	10		Color Units	2.5		2.5	1.0
Method: SM 2130B			Date Ana	lvzod.	09/18/2009	1400	
Turbidity	22	g	NTU	0.10), 1400 D.10	1.0
		3	-				
Method: SM 2150B Odor	1.0		Date Ana Units for Odd	5	09/18/2009	1.0	1.0
	1.0						1.0
Method: SM 2320B			Date Ana	-	09/18/2009		4.0
Alkalinity	88		mg/L	5.0	ę	5.0	1.0
Method: SM 2540C			Date Ana	lyzed:	09/23/2009	0930	
Total Dissolved Solids	120		mg/L	5.0	!	5.0	1.0
Method: SM 4500 CN E			Date Ana	lyzed:	09/21/2009	1515	
Cyanide, Free	0.012		mg/L	0.01	0 (0.010	1.0
Method: SM 4500 CN E			Date Ana	lvzed.	09/21/2009	1515	
Prep Method:			Date Pre	•	09/21/2009		
Cyanide, Total	0.010	U	mg/L	0.01		0.010	1.0
Method: SM 4500 F C			Date Ana	lvzod.	09/22/2009	1018	
Fluoride	0.20	U	mg/L	0.20		0.20	1.0
	0.20	·	-				
Method: SM 4500 H+ B	8.66		Date Ana SU	ilyzed: 0.20	09/17/2009) 1339).200	1.0
рН	0.00		30	0.200			1.0
Method: SM 9222D			Date Ana	,	09/17/2009		
Coliform, Fecal	1.0	U	CFU/100mL	1.0		1.0	1.0

Ms. Maureen Fisher Tim Miller Associates, Inc. 10 North Street Cold Spring, NY 10516

Client Sample ID:Raleigh Hotel Well 1Lab Sample ID:420-30027-1

Analyte	Result/Q	Result/Qualifier Unit RL		RL	Dilution	
Method: SM 9223			Date Analyzed:		09/17/2009 1720	
Coliform, Total	1.0	U	CFU/100mL	1.0	1.0	1.0
Escherichia coli	1.0	U	CFU/100mL	1.0	1.0	1.0
Method: SM 9215B		Date Analyzed:		09/17/2009 1615		
Heterotrophic Plate Count	170		CFU/mL	2.0	2.0	1.0

Ms. Maureen Fisher Tim Miller Associates, Inc. 10 North Street Cold Spring, NY 10516

Client Sample ID:Raleigh Hotel Well 2Lab Sample ID:420-30027-2

Analyte	Result/Qualifier	Unit	NONE	NONE	Dilution
Method: SM 2330B		Date Ana	alvzed: 09/28/	2009 0914	
Langelier Index	0.14	NONE	,		1.0

Ms. Maureen Fisher Tim Miller Associates, Inc. 10 North Street Cold Spring, NY 10516

Client Sample ID: Raleigh Hotel Well 2 Lab Sample ID: 420-30027-2

Analyte	Result/Qu	ualifier	Unit	RL	RL	Dilution
Method: 502.2			Date A	nalyzed: 09/1	9/2009 0408	
1,1,1,2-Tetrachloroethane	0.50	U	ug/L	0.50	0.50	1.0
Trichloroethene	0.50	U	ug/L	0.50	0.50	1.0
trans-1,3-Dichloropropene	0.50	U	ug/L	0.50	0.50	1.0
trans-1,2-Dichloroethene	0.50	U	ug/L	0.50	0.50	1.0
Toluene	2.3		ug/L	0.50	0.50	1.0
Tetrachloroethene	0.50	U	ug/L	0.50	0.50	1.0
tert-Butylbenzene	0.50	U	ug/L	0.50	0.50	1.0
Styrene	0.50	U	ug/L	0.50	0.50	1.0
sec-Butylbenzene	0.50	U	ug/L	0.50	0.50	1.0
o-Xylene	0.50	U	ug/L	0.50	0.50	1.0
Naphthalene	0.50	U	ug/L	0.50	0.50	1.0
N-Propylbenzene	0.50	U	ug/L	0.50	0.50	1.0
n-Butylbenzene	0.50	U	ug/L	0.50	0.50	1.0
Methylene Chloride	1.0	U	ug/L	1.0	1.0	1.0
Methyl tert-butyl ether	1.0	U	ug/L	1.0	1.0	1.0
m-Xylene & p-Xylene	0.50	U	ug/L	0.50	0.50	1.0
Isopropylbenzene	0.50	U	ug/L	0.50	0.50	1.0
Hexachlorobutadiene	0.50	U	ug/L	0.50	0.50	1.0
Ethylene Dibromide	0.50	U	ug/L	0.50	0.50	1.0
Ethylbenzene	0.50	U	ug/L	0.50	0.50	1.0
Dichlorodifluoromethane	0.50	U	ug/L	0.50	0.50	1.0
Bromodichloromethane	0.50	U	ug/L	0.50	0.50	1.0
Dibromomethane	0.50	U	ug/L	0.50	0.50	1.0
cis-1,3-Dichloropropene	0.50	U	ug/L	0.50	0.50	1.0
cis-1,2-Dichloroethene	0.50	U	ug/L	0.50	0.50	1.0
Chloromethane	0.50	U	ug/L	0.50	0.50	1.0
Chloroform	0.50	U	ug/L	0.50	0.50	1.0
Chloroethane	0.50	U	ug/L	0.50	0.50	1.0
Dibromochloromethane	0.50	U	ug/L	0.50	0.50	1.0
Bromochloromethane	0.50	U	ug/L	0.50	0.50	1.0
Trichlorofluoromethane	0.50	U	ug/L	0.50	0.50	1.0
Chlorobenzene	0.50	U	ug/L	0.50	0.50	1.0
Carbon tetrachloride	0.50	U	ug/L	0.50	0.50	1.0
Bromomethane	0.50	U	ug/L	0.50	0.50	1.0
Bromoform	0.50	U	ug/L	0.50	0.50	1.0
Bromobenzene	0.50	U	ug/L	0.50	0.50	1.0
Benzene	0.50	U	ug/L	0.50	0.50	1.0
4-Isopropyltoluene	0.50	U	ug/L	0.50	0.50	1.0
4-Chlorotoluene	0.50	U	ug/L	0.50	0.50	1.0
2-Chlorotoluene	0.50	U	ug/L	0.50	0.50	1.0

Ms. Maureen Fisher Tim Miller Associates, Inc. 10 North Street Cold Spring, NY 10516

Client Sample ID: Raleigh Hotel Well 2 Lab Sample ID: 420-30027-2

Analyte	Result/Qu	alifier	Unit	RL	RL	Dilution
2,2-Dichloropropane	0.50	U	ug/L	0.50	0.50	1.0
1,4-Dichlorobenzene	0.50	U	ug/L	0.50	0.50	1.0
1,3-Dichloropropane	0.50	U	ug/L	0.50	0.50	1.0
1,3-Dichlorobenzene	0.50	U *	ug/L	0.50	0.50	1.0
1,3,5-Trimethylbenzene	0.50	U	ug/L	0.50	0.50	1.0
1,2-Dichloropropane	0.50	U	ug/L	0.50	0.50	1.0
1,2-Dichloroethane	0.50	U	ug/L	0.50	0.50	1.0
1,2-Dichlorobenzene	0.50	U	ug/L	0.50	0.50	1.0
1,2-Dibromo-3-Chloropropane	0.50	U	ug/L	0.50	0.50	1.0
1,2,4-Trimethylbenzene	0.50	U	ug/L	0.50	0.50	1.0
1,2,4-Trichlorobenzene	0.50	U	ug/L	0.50	0.50	1.0
1,2,3-Trichloropropane	0.50	U	ug/L	0.50	0.50	1.0
1,2,3-Trichlorobenzene	0.50	U	ug/L	0.50	0.50	1.0
1,1-Dichloropropene	0.50	U	ug/L	0.50	0.50	1.0
1,1-Dichloroethene	0.50	U	ug/L	0.50	0.50	1.0
1,1-Dichloroethane	0.50	U	ug/L	0.50	0.50	1.0
1,1,2-Trichloroethane	0.50	U	ug/L	0.50	0.50	1.0
1,1,2,2-Tetrachloroethane	0.50	U	ug/L	0.50	0.50	1.0
1,1,1-Trichloroethane	0.50	U	ug/L	0.50	0.50	1.0
Vinyl chloride	0.50	U	ug/L	0.50	0.50	1.0
Method: 200.7 Rev 4.4			Date Analyzed:		09/24/2009 1138	
Prep Method: 200				repared:	09/22/2009 1005	
Fe	1000	g	ug/L	. 100	100	1.0
Mn	67	C C	ug/L	15	15	1.0
Na	34000		ug/L	5000	5000	1.0
Zn	53		ug/L	20	20	1.0
Method: 200.8			Date A	nalyzed:	09/28/2009 1402	
Prep Method: 200				repared:	09/22/2009 1011	
Ag	1.0	U	ug/L	1.0	1.0	1.0
Pb	3.0		ug/L	1.0	1.0	1.0
Arsenic	4.4		ug/L	1.0	1.0	1.0
Ве	1.0	U	ug/L	1.0	1.0	1.0
Cadmium	1.0	U	ug/L	1.0	1.0	1.0
Chromium	2.0	U	ug/L	2.0	2.0	1.0
Cu	2.1	U	ug/L	2.1	2.1	1.0
Ni	1.1	U	ug/L	1.1	1.1	1.0
Sb	2.0	U	ug/L	2.0	2.0	1.0
TI	1.0	U	ug/L	1.0	1.0	1.0
Barium	37		ug/L	2.0	2.0	1.0
Method: 200.8			Date A	nalyzed:	10/01/2009 1227	

Ms. Maureen Fisher Tim Miller Associates, Inc. 10 North Street Cold Spring, NY 10516

Client Sample ID: Raleigh Hotel Well 2 Lab Sample ID: 420-30027-2

Analyte	Result/Qu	alifier	Unit	RL		RL	Dilution
Prep Method: 200			Date Prep	ared:	09/29/2009	0959	
Selenium	5.0	U	ug/L	5.0	-	5.0	1.0
Method: 245.1			Date Anal		09/21/2009	9 1237	
Prep Method: 245.1			Date Prep		09/18/2009		
Hg	0.20	U	ug/L	0.20		0.20	1.0
Method: SM 2340B			Date Anal	/zed:	09/24/2009	9 1037	
Calcium hardness as calcium carbonate	16		mg/L	2.5	:	2.5	1.0
Method: 300.0			Date Anal	/zed:	09/18/2009	9 1221	
Nitrate as N	0.25	U	mg/L	0.25		0.25	1.0
Nitrite as N	0.25	U	mg/L	0.25		0.25	1.0
Sulfate	5.7		mg/L	5.0	:	5.0	1.0
Method: 300.0			Date Anal	/zed:	09/18/2009	9 1435	
Chloride	7.8		mg/L	1.5		1.5	1.0
Method: SM 2120B			Date Anal	/zed·	09/18/2009	1245	
Color	15		Color Units	2.5		2.5	1.0
Method: SM 2130B			Date Anal	vzod:	09/18/2009	1400	
Turbidity	37	g	NTU	0.10		0.10	1.0
	•	9	-				
Method: SM 2150B Odor	1.0		Date Anal Units for Odor	,	09/18/2009	9 1245 1.0	1.0
0001	1.0					1.0	1.0
Method: SM 2320B			Date Anal		09/18/2009		
Alkalinity	96		mg/L	5.0	:	5.0	1.0
Method: SM 2540C			Date Anal	/zed:	09/23/2009	0930	
Total Dissolved Solids	120		mg/L	5.0		5.0	1.0
Method: SM 4500 CN E			Date Anal	/zed:	09/21/2009	9 1515	
Cyanide, Free	0.019		mg/L	0.01	0	0.010	1.0
Method: SM 4500 CN E			Date Anal	/zed:	09/21/2009	9 1515	
Prep Method:			Date Prep		09/21/2009		
Cyanide, Total	0.010	U	mg/L	0.01	0	0.010	1.0
Method: SM 4500 F C			Date Anal	/zed·	09/22/2009	1018	
Fluoride	0.20	U	mg/L	0.20		0.20	1.0
		-	U				-
Method: SM 4500 H+ B рН	8.88		Date Analy SU	/zea: 0.20	09/17/2009 1	0.200	1.0
	0.00						1.0
Method: SM 9222D	4.0		Date Analy	,	09/17/2009		4.0
Coliform, Fecal	1.0	U	CFU/100mL	1.0		1.0	1.0

Ms. Maureen Fisher Tim Miller Associates, Inc. 10 North Street Cold Spring, NY 10516

Client Sample ID: Raleigh Hotel Well 2 Lab Sample ID: 420-30027-2

Analyte	Result/Q	ualifier	fier Unit RL		RL	Dilution
Method: SM 9223			Date Analy	zed:	09/17/2009 1720	
Coliform, Total	1.0	U	CFU/100mL	1.0	1.0	1.0
Escherichia coli	1.0	U	CFU/100mL	1.0	1.0	1.0
Method: SM 9215B			Date Analy	zed:	09/17/2009 1615	
Heterotrophic Plate Count	8.0		CFU/mL	2.0	2.0	1.0

Ms. Maureen Fisher Tim Miller Associates, Inc. 10 North Street Cold Spring, NY 10516

Client Sample ID:Raleigh Hotel Well 3Lab Sample ID:420-30027-3

Analyte	Result/Qualifier	Unit	NONE	NONE	Dilution
Method: SM 2330B		Date An	alyzed: 09/28/	/2009 0914	
Langelier Index	-0.61	NONE	-		1.0

Ms. Maureen Fisher Tim Miller Associates, Inc. 10 North Street Cold Spring, NY 10516

Client Sample ID: Raleigh Hotel Well 3 Lab Sample ID: 420-30027-3

Analyte	Result/Qu	ualifier	Unit	RL	RL	Dilution	
Method: 502.2			Date A	nalyzed: 09/1	9/2009 0458		
1,1,1,2-Tetrachloroethane	0.50	U	ug/L	0.50	0.50	1.0	
Trichloroethene	0.50	U	ug/L	0.50	0.50	1.0	
trans-1,3-Dichloropropene	0.50	U	ug/L	0.50	0.50	1.0	
trans-1,2-Dichloroethene	0.50	U	ug/L	0.50	0.50	1.0	
Toluene	1.4		ug/L	0.50	0.50	1.0	
Tetrachloroethene	0.50	U	ug/L	0.50	0.50	1.0	
tert-Butylbenzene	0.50	U	ug/L	0.50	0.50	1.0	
Styrene	0.50	U	ug/L	0.50	0.50	1.0	
sec-Butylbenzene	0.50	U	ug/L	0.50	0.50	1.0	
o-Xylene	0.50	U	ug/L	0.50	0.50	1.0	
Naphthalene	0.50	U	ug/L	0.50	0.50	1.0	
N-Propylbenzene	0.50	U	ug/L	0.50	0.50	1.0	
n-Butylbenzene	0.50	U	ug/L	0.50	0.50	1.0	
Methylene Chloride	1.0	U	ug/L	1.0	1.0	1.0	
Methyl tert-butyl ether	1.0	U	ug/L	1.0	1.0	1.0	
m-Xylene & p-Xylene	0.50	U	ug/L	0.50	0.50	1.0	
Isopropylbenzene	0.50	U	ug/L	0.50	0.50	1.0	
Hexachlorobutadiene	0.50	U	ug/L	0.50	0.50	1.0	
Ethylene Dibromide	0.50	U	ug/L	0.50	0.50	1.0	
Ethylbenzene	0.50	U	ug/L	0.50	0.50	1.0	
Dichlorodifluoromethane	0.50	U	ug/L	0.50	0.50	1.0	
Bromodichloromethane	0.50	U	ug/L	0.50	0.50	1.0	
Dibromomethane	0.50	U	ug/L	0.50	0.50	1.0	
cis-1,3-Dichloropropene	0.50	U	ug/L	0.50	0.50	1.0	
cis-1,2-Dichloroethene	0.50	U	ug/L	0.50	0.50	1.0	
Chloromethane	0.50	U	ug/L	0.50	0.50	1.0	
Chloroform	0.50	U	ug/L	0.50	0.50	1.0	
Chloroethane	0.50	U	ug/L	0.50	0.50	1.0	
Dibromochloromethane	0.50	U	ug/L	0.50	0.50	1.0	
Bromochloromethane	0.50	U	ug/L	0.50	0.50	1.0	
Trichlorofluoromethane	0.50	U	ug/L	0.50	0.50	1.0	
Chlorobenzene	0.50	U	ug/L	0.50	0.50	1.0	
Carbon tetrachloride	0.50	U	ug/L	0.50	0.50	1.0	
Bromomethane	0.50	U	ug/L	0.50	0.50	1.0	
Bromoform	0.50	U	ug/L	0.50	0.50	1.0	
Bromobenzene	0.50	U	ug/L	0.50	0.50	1.0	
Benzene	0.50	U	ug/L	0.50	0.50	1.0	
4-Isopropyltoluene	0.50	U	ug/L	0.50	0.50	1.0	
4-Chlorotoluene	0.50	U	ug/L	0.50	0.50	1.0	
2-Chlorotoluene	0.50	U	ug/L	0.50	0.50	1.0	

Ms. Maureen Fisher Tim Miller Associates, Inc. 10 North Street Cold Spring, NY 10516

Client Sample ID: Raleigh Hotel Well 3 Lab Sample ID: 420-30027-3

Analyte	Result/Qu	alifier	Unit	RL	RL	Dilution
2,2-Dichloropropane	0.50	U	ug/L	0.50	0.50	1.0
1,4-Dichlorobenzene	0.50	U	ug/L	0.50	0.50	1.0
1,3-Dichloropropane	0.50	U	ug/L	0.50	0.50	1.0
1,3-Dichlorobenzene	0.50	U *	ug/L	0.50	0.50	1.0
1,3,5-Trimethylbenzene	0.50	U	ug/L	0.50	0.50	1.0
1,2-Dichloropropane	0.50	U	ug/L	0.50	0.50	1.0
1,2-Dichloroethane	0.50	U	ug/L	0.50	0.50	1.0
1,2-Dichlorobenzene	0.50	U	ug/L	0.50	0.50	1.0
1,2-Dibromo-3-Chloropropane	0.50	U	ug/L	0.50	0.50	1.0
1,2,4-Trimethylbenzene	0.50	U	ug/L	0.50	0.50	1.0
1,2,4-Trichlorobenzene	0.50	U	ug/L	0.50	0.50	1.0
1,2,3-Trichloropropane	0.50	U	ug/L	0.50	0.50	1.0
1,2,3-Trichlorobenzene	0.50	U	ug/L	0.50	0.50	1.0
1,1-Dichloropropene	0.50	U	ug/L	0.50	0.50	1.0
1,1-Dichloroethene	0.50	U	ug/L	0.50	0.50	1.0
1,1-Dichloroethane	0.50	U	ug/L	0.50	0.50	1.0
1,1,2-Trichloroethane	0.50	U	ug/L	0.50	0.50	1.0
1,1,2,2-Tetrachloroethane	0.50	U	ug/L	0.50	0.50	1.0
1,1,1-Trichloroethane	0.50	U	ug/L	0.50	0.50	1.0
Vinyl chloride	0.50	U	ug/L	0.50	0.50	1.0
Method: 200.7 Rev 4.4			Date A	nalyzed: 09/2	4/2009 1054	
Prep Method: 200			Date P	repared: 09/2	1/2009 1541	
Fe	100	U	ug/L	100	100	1.0
Mn	15	U	ug/L	15	15	1.0
Na	26000		ug/L	5000	5000	1.0
Zn	67		ug/L	20	20	1.0
Method: 200.8				· , · · · · ·	2/2009 1417 1/2009 1541	
Prep Method: 200 Ag	1.0	U	ug/L	1.0	1.0	1.0
Ay Pb	1.0	U	ug/L	1.0	1.0	1.0
Arsenic	7.1	0	ug/L	1.0	1.0	1.0
Be	1.0	U	ug/L	1.0	1.0	1.0
Cadmium	1.0	U	ug/L	1.0	1.0	1.0
Chromium	2.0	U	ug/L	2.0	2.0	1.0
Cu	2.0	U	ug/L	2.0	2.0	1.0
Ni	2.1	U	ug/L ug/L	2.1	2.1	1.0
Sb	2.0	U	-	2.0	2.0	1.0 1.0
Sb Tl	2.0 1.0	U	ug/L	2.0 1.0	2.0	1.0 1.0
Barium	1.0 150	U	ug/L	2.0	2.0	1.0 1.0
		U	ug/L			1.0 1.0
Selenium	5.0	U	ug/L	5.0	5.0	1.0

Ms. Maureen Fisher Tim Miller Associates, Inc. 10 North Street Cold Spring, NY 10516

Client Sample ID: Raleigh Hotel Well 3 Lab Sample ID: 420-30027-3

Analyte	Result/Qu	alifier	Unit	RL	RL	Dilution
Method: 245.1			Date Ana	2	09/21/2009 1240	
Prep Method: 245.1	0.20	U	Date Pre	pared: 0.20	09/18/2009 1415 0.20	1.0
Hg	0.20	0	ug/L			1.0
Method: SM 2340B			Date Ana	•	09/24/2009 1037	
Calcium hardness as calcium carbonate	41		mg/L	2.5	2.5	1.0
Method: 300.0			Date Ana	alyzed:	09/18/2009 1232	
Nitrate as N	0.25	U	mg/L	0.25	0.25	1.0
Nitrite as N	0.25	U	mg/L	0.25	0.25	1.0
Sulfate	6.3		mg/L	5.0	5.0	1.0
Method: 300.0			Date Ana	alvzed:	09/18/2009 1445	
Chloride	10		mg/L	1.5	1.5	1.0
Method: SM 2120B			Data Ana	wzod:	09/18/2009 1245	
Color	10		Date Ana Color Units	1yzeu. 2.5	2.5	1.0
600	10			2.5	2.5	1.0
Method: SM 2130B			Date Ana	5	09/18/2009 1400	
Turbidity	4.4		NTU	0.10	0.10	1.0
Method: SM 2150B			Date Ana	alyzed:	09/18/2009 1245	
Odor	1.0		Units for Odd	or 1.0	1.0	1.0
Method: SM 2320B			Date Ana	alvzed.	09/18/2009 1703	
Alkalinity	87		mg/L	5.0	5.0	1.0
5			U			
Method: SM 2540C	4.40		Date Ana	-	09/24/2009 1013	1.0
Total Dissolved Solids	140		mg/L	5.0	5.0	1.0
Method: SM 4500 CN E			Date Ana	alyzed:	09/21/2009 1515	
Cyanide, Free	0.010	U	mg/L	0.010	0.010	1.0
Method: SM 4500 CN E			Date Ana	alvzed:	09/21/2009 1515	
Prep Method:			Date Pre	-	09/21/2009 1330	
Cyanide, Total	0.010	U	mg/L	0.010		1.0
Method: SM 4500 F C			- Data Ana	wzod:	09/22/2009 1018	
Fluoride	0.20	U	Date Ana mg/L	0.20	09/22/2009 1018	1.0
	0.20	0	-			1.0
Method: SM 4500 H+ B			Date Ana	•	09/17/2009 1512	
рН	7.93		SU	0.200	0.200	1.0
Method: SM 9222D			Date Ana	alyzed:	09/17/2009 1636	
Coliform, Fecal	1.0	U	CFU/100mL	1.0	1.0	1.0
Method: SM 9223			Date Ana	alvzod.	09/17/2009 1720	
Coliform, Total	1.0	U	CFU/100mL	5	1.0	1.0
	1.0	0		1.0	1.0	1.0

Ms. Maureen Fisher Tim Miller Associates, Inc. 10 North Street Cold Spring, NY 10516

Client Sample ID: Raleigh Hotel Well 3 Lab Sample ID: 420-30027-3

Analyte	Result/Q	Result/Qualifier U		RL	RL	Dilution
Escherichia coli	1.0	U	CFU/100mL	1.0	1.0	1.0
Method: SM 9215B			Date Analy	/zed:	09/17/2009 1615	
Heterotrophic Plate Count	10		CFU/mL	2.0	2.0	1.0

Ms. Maureen Fisher Tim Miller Associates, Inc. 10 North Street Cold Spring, NY 10516

Client Sample ID:Raleigh Hotel Well 4Lab Sample ID:420-30027-4

Analyte	Result/Qualifier	Unit	NONE	NONE	Dilution
Method: SM 2330B		Date Analy	/zed: 10/05	/2009 1332	
Langelier Index	-0.59	NONE			1.0

Ms. Maureen Fisher Tim Miller Associates, Inc. 10 North Street Cold Spring, NY 10516

Client Sample ID:Raleigh Hotel Well 4Lab Sample ID:420-30027-4

 Date Sampled:
 09/17/2009
 1130

 Date Received:
 09/17/2009
 1231

 Client Matrix:
 Water

Analyte	Result/Qu	ualifier	Unit	RL	RL	Dilution
Method: 502.2			Date A	nalyzed: 09/1	9/2009 0548	
1,1,1,2-Tetrachloroethane	0.50	U	ug/L	0.50	0.50	1.0
Trichloroethene	0.50	U	ug/L	0.50	0.50	1.0
trans-1,3-Dichloropropene	0.50	U	ug/L	0.50	0.50	1.0
trans-1,2-Dichloroethene	0.50	U	ug/L	0.50	0.50	1.0
Toluene	0.50	U	ug/L	0.50	0.50	1.0
Tetrachloroethene	0.50	U	ug/L	0.50	0.50	1.0
tert-Butylbenzene	0.50	U	ug/L	0.50	0.50	1.0
Styrene	0.50	U	ug/L	0.50	0.50	1.0
sec-Butylbenzene	0.50	U	ug/L	0.50	0.50	1.0
o-Xylene	0.50	U	ug/L	0.50	0.50	1.0
Naphthalene	0.50	U	ug/L	0.50	0.50	1.0
N-Propylbenzene	0.50	U	ug/L	0.50	0.50	1.0
n-Butylbenzene	0.50	U	ug/L	0.50	0.50	1.0
Methylene Chloride	1.0	U	ug/L	1.0	1.0	1.0
Methyl tert-butyl ether	1.0	U	ug/L	1.0	1.0	1.0
m-Xylene & p-Xylene	0.50	U	ug/L	0.50	0.50	1.0
Isopropylbenzene	0.50	U	ug/L	0.50	0.50	1.0
Hexachlorobutadiene	0.50	U	ug/L	0.50	0.50	1.0
Ethylene Dibromide	0.50	U	ug/L	0.50	0.50	1.0
Ethylbenzene	0.50	U	ug/L	0.50	0.50	1.0
Dichlorodifluoromethane	0.50	U	ug/L	0.50	0.50	1.0
Bromodichloromethane	0.50	U	ug/L	0.50	0.50	1.0
Dibromomethane	0.50	U	ug/L	0.50	0.50	1.0
cis-1,3-Dichloropropene	0.50	U	ug/L	0.50	0.50	1.0
cis-1,2-Dichloroethene	0.50	U	ug/L	0.50	0.50	1.0
Chloromethane	0.50	U	ug/L	0.50	0.50	1.0
Chloroform	0.50	U	ug/L	0.50	0.50	1.0
Chloroethane	0.50	U	ug/L	0.50	0.50	1.0
Dibromochloromethane	0.50	U	ug/L	0.50	0.50	1.0
Bromochloromethane	0.50	U	ug/L	0.50	0.50	1.0
Trichlorofluoromethane	0.50	U	ug/L	0.50	0.50	1.0
Chlorobenzene	0.50	U	ug/L	0.50	0.50	1.0
Carbon tetrachloride	0.50	U	ug/L	0.50	0.50	1.0
Bromomethane	0.50	U	ug/L	0.50	0.50	1.0
Bromoform	0.50	U	ug/L	0.50	0.50	1.0
Bromobenzene	0.50	U	ug/L	0.50	0.50	1.0
Benzene	0.50	U	ug/L	0.50	0.50	1.0
4-Isopropyltoluene	0.50	U	ug/L	0.50	0.50	1.0
4-Chlorotoluene	0.50	U	ug/L	0.50	0.50	1.0
2-Chlorotoluene	0.50	U	ug/L	0.50	0.50	1.0

Ms. Maureen Fisher Tim Miller Associates, Inc. 10 North Street Cold Spring, NY 10516

Client Sample ID: Raleigh Hotel Well 4 Lab Sample ID: 420-30027-4

1,4-Dichlorobenzene 0.50 U ug/L 0.50 0.50 1,3-Dichloropropane 0.50 U ug/L 0.50 0.50 1,3-Dichlorobenzene 0.50 U* ug/L 0.50 0.50 1,3-Dichlorobenzene 0.50 U* ug/L 0.50 0.50 1,3,5-Trimethylbenzene 0.50 U ug/L 0.50 0.50 1,2-Dichloropropane 0.50 U ug/L 0.50 0.50 1,2-Dichloroptopane 0.50 U ug/L 0.50 0.50 1,2-Dichlorobenzene 0.50 U ug/L 0.50 0.50 1,2-Dichlorobenzene 0.50 U ug/L 0.50 0.50 1,2-Dibromo-3-Chloropropane 0.50 U ug/L 0.50 0.50 1,2,4-Trimethylbenzene 0.50 U ug/L 0.50 0.50 1,2,3-Trichloropropane 0.50 U ug/L 0.50 0.50 1,3,3-Trichloropropane 0.50 U ug/L 0.50 0.50 1,1-Dichloroptene <	1.0 1.0 1.0 1.0
1,4-Dichlorobenzene0.50Uug/L0.500.501,3-Dichloropropane0.50Uug/L0.500.501,3-Dichlorobenzene0.50U*ug/L0.500.501,3,5-Trimethylbenzene0.50Uug/L0.500.501,2-Dichloropropane0.50Uug/L0.500.501,2-Dichlorobenzene0.50Uug/L0.500.501,2-Dichlorobenzene0.50Uug/L0.500.501,2-Dichlorobenzene0.50Uug/L0.500.501,2-Dichlorobenzene0.50Uug/L0.500.501,2-Dichlorobenzene0.50Uug/L0.500.501,2-Dichloropropane0.50Uug/L0.500.501,2-Dichlorobenzene0.50Uug/L0.500.501,2,4-Trimethylbenzene0.50Uug/L0.500.501,2,3-Trichloropropane0.50Uug/L0.500.501,1,2-Trichloropene0.50Uug/L0.500.501,1-Dichloropene0.50Uug/L0.500.501,1,2-Trichloroethane0.50Uug/L0.500.501,1,2,2-Tetrachloroethane0.50Uug/L0.500.501,1,2,2-Tetrachloroethane0.50Uug/L0.500.501,1,1-Trichloroethane0.50Uug/L0.500.501,1,1-Trichloroethane<	1.0 1.0
1,3-Dichlorobenzene0.50U*ug/L0.500.501,3,5-Trimethylbenzene0.50Uug/L0.500.501,2-Dichloropropane0.50Uug/L0.500.501,2-Dichloroethane0.50Uug/L0.500.501,2-Dichlorobenzene0.50Uug/L0.500.501,2-Dibromo-3-Chloropropane0.50Uug/L0.500.501,2,4-Trimethylbenzene0.50Uug/L0.500.501,2,4-Trichlorobenzene0.50Uug/L0.500.501,2,3-Trichloropropane0.50Uug/L0.500.501,2,3-Trichloropene0.50Uug/L0.500.501,1-Dichloroethane0.50Uug/L0.500.501,1-Dichloroethane0.50Uug/L0.500.501,1,2-Trichloroethane0.50Uug/L0.500.501,1,2,2-Tetrachloroethane0.50Uug/L0.500.501,1,1-Trichloroethane0.50Uug/L0.500.501,1,1-Trichloroethane0.50Uug/L0.500.501,1,1-Trichloroethane0.50Uug/L0.500.501,1,1-Trichloroethane0.50Uug/L0.500.501,1,1-Trichloroethane0.50Uug/L0.500.501,1,1-Trichloroethane0.50Uug/L0.500.50	1.0
1,3,5-Trimethylbenzene0.50Uug/L0.500.501,2-Dichloropropane0.50Uug/L0.500.501,2-Dichloropethane0.50Uug/L0.500.501,2-Dichlorobenzene0.50Uug/L0.500.501,2-Diblorop-3-Chloropropane0.50Uug/L0.500.501,2,4-Trimethylbenzene0.50Uug/L0.500.501,2,4-Trichlorobenzene0.50Uug/L0.500.501,2,4-Trichlorobenzene0.50Uug/L0.500.501,2,3-Trichloropropane0.50Uug/L0.500.501,2,3-Trichloropenpene0.50Uug/L0.500.501,1-Dichloroptopene0.50Uug/L0.500.501,1-Dichloroethane0.50Uug/L0.500.501,1,2-Trichloroethane0.50Uug/L0.500.501,1,2,2-Tetrachloroethane0.50Uug/L0.500.501,1,1-Trichloroethane0.50Uug/L0.500.501,1,1-Trichloroethane0.50Uug/L0.500.501,1,1-Trichloroethane0.50Uug/L0.500.501,1,1-Trichloroethane0.50Uug/L0.500.501,1,1-Trichloroethane0.50Uug/L0.500.501,1,1-Trichloroethane0.50Uug/L0.500.50 <td></td>	
1,3,5-Trimethylbenzene0.50Uug/L0.500.501,2-Dichloropropane0.50Uug/L0.500.501,2-Dichloroethane0.50Uug/L0.500.501,2-Dichlorobenzene0.50Uug/L0.500.501,2-Dibromo-3-Chloropropane0.50Uug/L0.500.501,2,4-Trimethylbenzene0.50Uug/L0.500.501,2,4-Trichlorobenzene0.50Uug/L0.500.501,2,3-Trichloropropane0.50Uug/L0.500.501,2,3-Trichloropropane0.50Uug/L0.500.501,2,3-Trichloropropane0.50Uug/L0.500.501,1-Dichloropropane0.50Uug/L0.500.501,1-Dichloroethane0.50Uug/L0.500.501,1,2-Trichloroethane0.50Uug/L0.500.501,1,2,2-Tetrachloroethane0.50Uug/L0.500.501,1,1-Trichloroethane0.50Uug/L0.500.501,1,1-Trichloroethane0.50Uug/L0.500.501,1,1-Trichloroethane0.50Uug/L0.500.501,1,1-Trichloroethane0.50Uug/L0.500.501,1,1-Trichloroethane0.50Uug/L0.500.501,1,1-Trichloroethane0.50Uug/L0.500.501,1,1-	1 0
1,2-Dichlorobenzene0.50Uug/L0.500.501,2-Dichlorobenzene0.50Uug/L0.500.501,2-Dibromo-3-Chloropropane0.50Uug/L0.500.501,2,4-Trimethylbenzene0.50Uug/L0.500.501,2,4-Trichlorobenzene0.50Uug/L0.500.501,2,3-Trichloropropane0.50Uug/L0.500.501,2,3-Trichloropropane0.50Uug/L0.500.501,2,3-Trichloropropane0.50Uug/L0.500.501,2,3-Trichloropropane0.50Uug/L0.500.501,1-Dichloropropene0.50Uug/L0.500.501,1-Dichloroethane0.50Uug/L0.500.501,1,2-Trichloroethane0.50Uug/L0.500.501,1,2,2-Tetrachloroethane0.50Uug/L0.500.501,1,1-Trichloroethane0.50Uug/L0.500.501,1,1-Trichloroethane0.50Uug/L0.500.501,1,1-Trichloroethane0.50Uug/L0.500.501,1,1-Trichloroethane0.50Uug/L0.500.501,1,1-Trichloroethane0.50Uug/L0.500.50	1.0
1,2-Dichlorobenzene0.50Uug/L0.500.501,2-Dibromo-3-Chloropropane0.50Uug/L0.500.501,2,4-Trimethylbenzene0.50Uug/L0.500.501,2,4-Trichlorobenzene0.50Uug/L0.500.501,2,3-Trichloropropane0.50Uug/L0.500.501,2,3-Trichlorobenzene0.50Uug/L0.500.501,2,3-Trichlorobenzene0.50Uug/L0.500.501,1-Dichloropropane0.50Uug/L0.500.501,1-Dichloropropene0.50Uug/L0.500.501,1-Dichloroethane0.50Uug/L0.500.501,1,2-Trichloroethane0.50Uug/L0.500.501,1,2,2-Tetrachloroethane0.50Uug/L0.500.501,1,1-Trichloroethane0.50Uug/L0.500.501,1,1-Trichloroethane0.50Uug/L0.500.50	1.0
1,2-Dichlorobenzene0.50Uug/L0.500.501,2-Dibromo-3-Chloropropane0.50Uug/L0.500.501,2,4-Trimethylbenzene0.50Uug/L0.500.501,2,4-Trichlorobenzene0.50Uug/L0.500.501,2,3-Trichloropropane0.50Uug/L0.500.501,2,3-Trichlorobenzene0.50Uug/L0.500.501,2,3-Trichlorobenzene0.50Uug/L0.500.501,1-Dichloropropane0.50Uug/L0.500.501,1-Dichloropropene0.50Uug/L0.500.501,1-Dichloroethane0.50Uug/L0.500.501,1,2-Trichloroethane0.50Uug/L0.500.501,1,2,2-Tetrachloroethane0.50Uug/L0.500.501,1,1-Trichloroethane0.50Uug/L0.500.501,1,1-Trichloroethane0.50Uug/L0.500.50	1.0
1,2,4-Trimethylbenzene0.50Uug/L0.500.501,2,4-Trichlorobenzene0.50Uug/L0.500.501,2,3-Trichloropropane0.50Uug/L0.500.501,2,3-Trichlorobenzene0.50Uug/L0.500.501,2,3-Trichlorobenzene0.50Uug/L0.500.501,1-Dichloropropene0.50Uug/L0.500.501,1-Dichloroethene0.50Uug/L0.500.501,1-Dichloroethane0.50Uug/L0.500.501,1,2-Trichloroethane0.50Uug/L0.500.501,1,2,2-Tetrachloroethane0.50Uug/L0.500.501,1,1-Trichloroethane0.50Uug/L0.500.501,1,1-Trichloroethane0.50Uug/L0.500.50	1.0
1,2,4-Trichlorobenzene0.50Uug/L0.500.501,2,3-Trichloropropane0.50Uug/L0.500.501,2,3-Trichlorobenzene0.50Uug/L0.500.501,1-Dichloropropene0.50Uug/L0.500.501,1-Dichloroethene0.50Uug/L0.500.501,1-Dichloroethane0.50Uug/L0.500.501,1,2-Trichloroethane0.50Uug/L0.500.501,1,2,2-Tetrachloroethane0.50Uug/L0.500.501,1,1-Trichloroethane0.50Uug/L0.500.501,1,1-Trichloroethane0.50Uug/L0.500.50	1.0
1,2,4-Trichlorobenzene0.50Uug/L0.500.501,2,3-Trichloropropane0.50Uug/L0.500.501,2,3-Trichlorobenzene0.50Uug/L0.500.501,1-Dichloropropene0.50Uug/L0.500.501,1-Dichloroethene0.50Uug/L0.500.501,1-Dichloroethane0.50Uug/L0.500.501,1,2-Trichloroethane0.50Uug/L0.500.501,1,2,2-Tetrachloroethane0.50Uug/L0.500.501,1,1-Trichloroethane0.50Uug/L0.500.501,1,1-Trichloroethane0.50Uug/L0.500.50	1.0
1,2,3-Trichloroberzene0.50Uug/L0.500.501,1-Dichloropropene0.50Uug/L0.500.501,1-Dichloroethene0.50Uug/L0.500.501,1-Dichloroethane0.50Uug/L0.500.501,1-Dichloroethane0.50Uug/L0.500.501,1,2-Trichloroethane0.50Uug/L0.500.501,1,2,2-Tetrachloroethane0.50Uug/L0.500.501,1,1-Trichloroethane0.50Uug/L0.500.50	1.0
1,1-Dichloropropene0.50Uug/L0.500.501,1-Dichloroethene0.50Uug/L0.500.501,1-Dichloroethane0.50Uug/L0.500.501,1,2-Trichloroethane0.50Uug/L0.500.501,1,2,2-Tetrachloroethane0.50Uug/L0.500.501,1,2,2-Tetrachloroethane0.50Uug/L0.500.501,1,1-Trichloroethane0.50Uug/L0.500.50	1.0
1,1-Dichloropropene0.50Uug/L0.500.501,1-Dichloroethene0.50Uug/L0.500.501,1-Dichloroethane0.50Uug/L0.500.501,1,2-Trichloroethane0.50Uug/L0.500.501,1,2,2-Tetrachloroethane0.50Uug/L0.500.501,1,2,2-Tetrachloroethane0.50Uug/L0.500.501,1,1-Trichloroethane0.50Uug/L0.500.50	1.0
1,1-Dichloroethane0.50Uug/L0.500.501,1,2-Trichloroethane0.50Uug/L0.500.501,1,2,2-Tetrachloroethane0.50Uug/L0.500.501,1,1-Trichloroethane0.50Uug/L0.500.50	1.0
1,1,2-Trichloroethane0.50Uug/L0.500.501,1,2,2-Tetrachloroethane0.50Uug/L0.500.501,1,1-Trichloroethane0.50Uug/L0.500.50	1.0
1,1,2-Trichloroethane0.50Uug/L0.500.501,1,2,2-Tetrachloroethane0.50Uug/L0.500.501,1,1-Trichloroethane0.50Uug/L0.500.50	1.0
1,1,1-Trichloroethane 0.50 U ug/L 0.50 0.50	1.0
, , , , , , , , , , , , , , , , , , ,	1.0
	1.0
Vinyl chloride 0.50 U ug/L 0.50 0.50	1.0
Method: 200.7 Rev 4.4 Date Analyzed: 09/24/2009 1059	
Prep Method: 200 Date Prepared: 09/21/2009 1541	
Fe 100 U ug/L 100 100	1.0
Ū Ū	1.0
	1.0
Zn 89 ug/L 20 20	1.0
Method: 200.8 Date Analyzed: 09/22/2009 1419	
Prep Method: 200 Date Prepared: 09/21/2009 1541	
о о	1.0
Pb 1.0 U ug/L 1.0 1.0	1.0
Arsenic 4.3 ug/L 1.0 1.0	1.0
Be 1.0 U ug/L 1.0 1.0	1.0
0	1.0
Chromium 2.3 ug/L 2.0 2.0	1.0
Cu 2.1 U ug/L 2.1 2.1	1.0
Ū Ū	1.0
	1.0
TI 1.0 U ug/L 1.0 1.0	4 0
Barium 97 ug/L 2.0 2.0	1.0
Selenium 5.0 U ug/L 5.0 5.0	1.0 1.0 1.0

Ms. Maureen Fisher Tim Miller Associates, Inc. 10 North Street Cold Spring, NY 10516

Client Sample ID: Raleigh Hotel Well 4 Lab Sample ID: 420-30027-4

Analyte	Result/Qu	alifier	Unit	RL	I	RL	Dilution
Method: 245.1			Date Ana		09/21/2009		
Prep Method: 245.1			Date Pre		09/18/2009		
Hg	0.20	U	ug/L	0.20	(0.20	1.0
Method: SM 2340B			Date Ana	lyzed:	09/24/2009	1037	
Calcium hardness as calcium carbonate	32		mg/L	2.5		2.5	1.0
Method: 300.0			Date Ana	lyzed:	09/18/2009	1242	
Nitrate as N	0.25	U	mg/L	0.25	().25	1.0
Nitrite as N	0.25	U	mg/L	0.25	().25	1.0
Sulfate	5.6		mg/L	5.0	Ę	5.0	1.0
Method: 300.0			Date Ana	lvzed:	09/18/2009	1455	
Chloride	8.2		mg/L	1.5		1.5	1.0
Method: SM 2120B			Date Ana	lvzed:	09/18/2009	1245	
Color	5.0		Color Units	2.5		2.5	1.0
Method: SM 2130B			Date Ana	lvzed:	09/18/2009	1400	
Turbidity	1.1		NTU	0.10).10	1.0
			-				1.0
Method: SM 2150B	1.0		Date Ana Units for Odo		09/18/2009		1.0
Odor	1.0					1.0	1.0
Method: SM 2320B			Date Ana	-	09/18/2009		
Alkalinity	84		mg/L	5.0	Ę	5.0	1.0
Method: SM 2540C			Date Ana	lyzed:	09/24/2009	1013	
Total Dissolved Solids	140		mg/L	5.0	Ę	5.0	1.0
Method: SM 4500 CN E			Date Ana	lvzed:	09/21/2009	1515	
Cyanide, Free	0.010	U	mg/L	0.010		0.010	1.0
-			-	ly zodi	00/25/2000	1110	
Method: SM 4500 CN E			Date Ana Date Pre	•	09/25/2009 09/24/2009	-	
Prep Method: Cyanide, Total	0.010	U	mg/L	0.010		0930	1.0
	0.010	0	-				1.0
Method: SM 4500 F C			Date Ana	-	09/22/2009		
Fluoride	0.20	U	mg/L	0.20	(0.20	1.0
Method: SM 4500 H+ B			Date Ana	lyzed:	09/17/2009	1524	
рН	8.10		SU	0.200) (0.200	1.0
Method: SM 9222D			Date Ana	lvzed:	09/17/2009	1636	
Coliform, Fecal	1.0	U	CFU/100mL	1.0		1.0	1.0
, ,					00/17/0000	1700	
Method: SM 9223 Coliform, Total	1.0	U	Date Ana CFU/100mL	iyzed: 1.0	09/17/2009	1720 I.0	1.0
	1.0	U	GEOLIOUIIL	1.0		1.0	1.0

Ms. Maureen Fisher Tim Miller Associates, Inc. 10 North Street Cold Spring, NY 10516

Client Sample ID: Raleigh Hotel Well 4 Lab Sample ID: 420-30027-4

Analyte	Result/Q	ualifier	Unit	RL	RL	Dilution
Escherichia coli	1.0	U	CFU/100mL	1.0	1.0	1.0
Method: SM 9215B			Date Analy	/zed:	09/17/2009 1615	
Heterotrophic Plate Count	77		CFU/mL	2.0	2.0	1.0

Ms. Maureen Fisher Tim Miller Associates, Inc. 10 North Street Cold Spring, NY 10516

Client Sample ID:Raleigh Hotel Well 4ALab Sample ID:420-30027-5

Analyte	Result/Qualifier	Unit	NONE	NONE	Dilution
Method: SM 2330B		Date Ar			
Langelier Index	-1.4	NONE	2		1.0

Ms. Maureen Fisher Tim Miller Associates, Inc. 10 North Street Cold Spring, NY 10516

Client Sample ID:Raleigh Hotel Well 4ALab Sample ID:420-30027-5

Date Sampled:09/17/20091100Date Received:09/17/20091231Client Matrix:Water

Analyte	Result/Qu	ualifier	Unit	RL	RL	Dilution
Method: 502.2			Date A	nalyzed: 09/1	9/2009 0638	
1,1,1,2-Tetrachloroethane	0.50	U	ug/L	0.50	0.50	1.0
Trichloroethene	0.50	U	ug/L	0.50	0.50	1.0
trans-1,3-Dichloropropene	0.50	U	ug/L	0.50	0.50	1.0
trans-1,2-Dichloroethene	0.50	U	ug/L	0.50	0.50	1.0
Toluene	0.50	U	ug/L	0.50	0.50	1.0
Tetrachloroethene	0.50	U	ug/L	0.50	0.50	1.0
tert-Butylbenzene	0.50	U	ug/L	0.50	0.50	1.0
Styrene	0.50	U	ug/L	0.50	0.50	1.0
sec-Butylbenzene	0.50	U	ug/L	0.50	0.50	1.0
o-Xylene	0.50	U	ug/L	0.50	0.50	1.0
Naphthalene	0.50	U	ug/L	0.50	0.50	1.0
N-Propylbenzene	0.50	U	ug/L	0.50	0.50	1.0
n-Butylbenzene	0.50	U	ug/L	0.50	0.50	1.0
Methylene Chloride	1.0	U	ug/L	1.0	1.0	1.0
Methyl tert-butyl ether	1.0	U	ug/L	1.0	1.0	1.0
m-Xylene & p-Xylene	0.50	U	ug/L	0.50	0.50	1.0
Isopropylbenzene	0.50	U	ug/L	0.50	0.50	1.0
Hexachlorobutadiene	0.50	U	ug/L	0.50	0.50	1.0
Ethylene Dibromide	0.50	U	ug/L	0.50	0.50	1.0
Ethylbenzene	0.50	U	ug/L	0.50	0.50	1.0
Dichlorodifluoromethane	0.50	U	ug/L	0.50	0.50	1.0
Bromodichloromethane	0.50	U	ug/L	0.50	0.50	1.0
Dibromomethane	0.50	U	ug/L	0.50	0.50	1.0
cis-1,3-Dichloropropene	0.50	U	ug/L	0.50	0.50	1.0
cis-1,2-Dichloroethene	0.50	U	ug/L	0.50	0.50	1.0
Chloromethane	0.50	U	ug/L	0.50	0.50	1.0
Chloroform	0.50	U	ug/L	0.50	0.50	1.0
Chloroethane	0.50	U	ug/L	0.50	0.50	1.0
Dibromochloromethane	0.50	U	ug/L	0.50	0.50	1.0
Bromochloromethane	0.50	U	ug/L	0.50	0.50	1.0
Trichlorofluoromethane	0.50	U	ug/L	0.50	0.50	1.0
Chlorobenzene	0.50	U	ug/L	0.50	0.50	1.0
Carbon tetrachloride	0.50	U	ug/L	0.50	0.50	1.0
Bromomethane	0.50	U	ug/L	0.50	0.50	1.0
Bromoform	0.50	U	ug/L	0.50	0.50	1.0
Bromobenzene	0.50	U	ug/L	0.50	0.50	1.0
Benzene	0.50	U	ug/L	0.50	0.50	1.0
4-Isopropyltoluene	0.50	U	ug/L	0.50	0.50	1.0
4-Chlorotoluene	0.50	U	ug/L	0.50	0.50	1.0
2-Chlorotoluene	0.50	U	ug/L	0.50	0.50	1.0

Ms. Maureen Fisher Tim Miller Associates, Inc. 10 North Street Cold Spring, NY 10516

Client Sample ID:Raleigh Hotel Well 4ALab Sample ID:420-30027-5

Date Sampled: 09/17/2009 1100 Date Received: 09/17/2009 1231 Client Matrix: Water

Analyte	Result/Qu	alifier	Unit	RL	RL	Dilution
2,2-Dichloropropane	0.50	U	ug/L	0.50	0.50	1.0
1,4-Dichlorobenzene	0.50	U	ug/L	0.50	0.50	1.0
1,3-Dichloropropane	0.50	U	ug/L	0.50	0.50	1.0
1,3-Dichlorobenzene	0.50	U *	ug/L	0.50	0.50	1.0
1,3,5-Trimethylbenzene	0.50	U	ug/L	0.50	0.50	1.0
1,2-Dichloropropane	0.50	U	ug/L	0.50	0.50	1.0
1,2-Dichloroethane	0.50	U	ug/L	0.50	0.50	1.0
1,2-Dichlorobenzene	0.50	U	ug/L	0.50	0.50	1.0
1,2-Dibromo-3-Chloropropane	0.50	U	ug/L	0.50	0.50	1.0
1,2,4-Trimethylbenzene	0.50	U	ug/L	0.50	0.50	1.0
1,2,4-Trichlorobenzene	0.50	U	ug/L	0.50	0.50	1.0
1,2,3-Trichloropropane	0.50	U	ug/L	0.50	0.50	1.0
1,2,3-Trichlorobenzene	0.50	U	ug/L	0.50	0.50	1.0
1,1-Dichloropropene	0.50	Ū	ug/L	0.50	0.50	1.0
1,1-Dichloroethene	0.50	U	ug/L	0.50	0.50	1.0
1,1-Dichloroethane	0.50	U	ug/L	0.50	0.50	1.0
1,1,2-Trichloroethane	0.50	Ū	ug/L	0.50	0.50	1.0
1,1,2,2-Tetrachloroethane	0.50	U	ug/L	0.50	0.50	1.0
1,1,1-Trichloroethane	0.50	Ŭ	ug/L	0.50	0.50	1.0
Vinyl chloride	0.50	U	ug/L	0.50	0.50	1.0
Method: 200.7 Rev 4.4			Date A	nalyzed:	09/24/2009 1143	
Prep Method: 200				repared:	09/22/2009 1005	
Fe	320	g	ug/L	100	100	1.0
Mn	110	5	ug/L	15	15	1.0
Na	33000		ug/L	5000	-	1.0
Zn	620		ug/L	20	20	1.0
Method: 200.8			Date A	nalyzed:	09/28/2009 1410	
Prep Method: 200				repared:	09/22/2009 1011	
Ag	1.0	U	ug/L	. 1.0	1.0	1.0
Pb	1.0	U	ug/L	1.0	1.0	1.0
Arsenic	2.6		ug/L	1.0	1.0	1.0
Be	1.0	U	ug/L	1.0	1.0	1.0
Cadmium	1.0	U	ug/L	1.0	1.0	1.0
Chromium	2.0	Ŭ	ug/L	2.0	2.0	1.0
Cu	2.7	-	ug/L	2.1	2.1	1.0
Ni	1.2		ug/L	1.1	1.1	1.0
Sb	2.0	U	ug/L	2.0	2.0	1.0
TI	1.0	Ŭ	ug/L	1.0	1.0	1.0
Barium	180	-	ug/L	2.0	2.0	1.0
Method: 200.8			Date A	nalyzed:	10/06/2009 1342	

Page 28 of 35

Ms. Maureen Fisher Tim Miller Associates, Inc. 10 North Street Cold Spring, NY 10516

Client Sample ID: Raleigh Hotel Well 4A Lab Sample ID: 420-30027-5

Date Sampled: 09/17/2009 1100 Date Received: 09/17/2009 1231 Client Matrix: Water

Analyte	Result/Qu	alifier	Unit	RL	l	RL	Dilution
Prep Method: 200			Date Prep		10/05/2009		
Selenium	5.0	U	ug/L	5.0		5.0	1.0
Method: 245.1			Date Anal	-	09/21/2009		
Prep Method: 245.1			Date Prep		09/18/2009		
Hg	0.20	U	ug/L	0.20		0.20	1.0
Method: SM 2340B			Date Anal	yzed:	09/24/2009	9 1037	
Calcium hardness as calcium carbonate	33		mg/L	2.5	:	2.5	1.0
Method: 300.0			Date Anal	yzed:	09/18/2009	9 1252	
Nitrate as N	0.25	U	mg/L	0.25	(0.25	1.0
Nitrite as N	0.25	U	mg/L	0.25	(0.25	1.0
Sulfate	8.9		mg/L	5.0	:	5.0	1.0
Method: 300.0			Date Anal	vzed:	09/18/2009	9 1506	
Chloride	20		mg/L	1.5		1.5	1.0
Method: SM 2120B			Date Anal	vzod:	09/18/2009	1245	
Color	10		Color Units	y∠eu. 2.5		2.5	1.0
	10			-		-	1.0
Method: SM 2130B	40	_	Date Anal	5	09/18/2009		1.0
Turbidity	13	g	NTU	0.10		0.10	1.0
Method: SM 2150B			Date Anal	,	09/18/2009	-	
Odor	1.0		Units for Odo	r 1.0		1.0	1.0
Method: SM 2320B			Date Anal	yzed:	09/18/2009	9 1722	
Alkalinity	88		mg/L	5.0	:	5.0	1.0
Method: SM 2540C			Date Anal	vzed:	09/24/2009	9 1013	
Total Dissolved Solids	150		mg/L	5.0		5.0	1.0
Method: SM 4500 CN E			Date Anal	vzod:	09/21/2009	1515	
Cyanide, Free	0.010	U	mg/L	yzeu. 0.010		0.010	1.0
	0.010	0	U				1.0
Method: SM 4500 CN E			Date Anal		09/25/2009		
Prep Method:	0.010		Date Prep		09/24/2009		1.0
Cyanide, Total	0.010	U	mg/L	0.01	J	0.010	1.0
Method: SM 4500 F C			Date Anal	•	09/22/2009		
Fluoride	0.20	U	mg/L	0.20		0.20	1.0
Method: SM 4500 H+ B			Date Anal	yzed:	09/17/2009	9 1530	
рН	7.25		SU	0.20	0 0	0.200	1.0
Method: SM 9222D			Date Anal	vzed:	09/17/2009	9 1636	
Coliform, Fecal	1.0	U	CFU/100mL	1.0		1.0	1.0
		-					

Ms. Maureen Fisher Tim Miller Associates, Inc. 10 North Street Cold Spring, NY 10516

Client Sample ID:Raleigh Hotel Well 4ALab Sample ID:420-30027-5

Date Sampled: 09/17/2009 1100 Date Received: 09/17/2009 1231 Client Matrix: Water

Analyte	Result/Q	ualifier	Unit	RL	RL	Dilution
Method: SM 9223			Date Analy	/zed:	09/17/2009 1720	
Coliform, Total	1.0	U	CFU/100mL	1.0	1.0	1.0
Escherichia coli	1.0	U	CFU/100mL	1.0	1.0	1.0
Method: SM 9215B			Date Analy	/zed:	09/17/2009 1615	
Heterotrophic Plate Count	120		CFU/mL	2.0	2.0	1.0

DATA REPORTING QUALIFIERS

Client: Tim Miller Associates, Inc.

Job Number: 420-30027-1

Lab Section	Qualifier	Description
GC VOA		
	* U	LCS or LCSD exceeds the control limits The analyte was analyzed for but not detected at or above the
	C	stated limit.
Metals		
	g U	Result fails applicable drinking water standards The analyte was analyzed for but not detected at or above the
		stated limit.
General Chemistry		
	g U	Result fails applicable drinking water standards The analyte was analyzed for but not detected at or above the
		stated limit.

	N OF	CHAIN OF CUSTODY	λd							REPORT# (Lab Use Only)
Lab Name Address & Phone	EnviroTest Laboratories 315 Fullerton Avenue, N	EnviroTest Laboratories 315 Fullerton Avenue, Newburgh, New York 12550 845-562-0890	urgh, Nev	w York	12550 8	45-562	0890			30027
PROJECT REFERENCE Raleidh Hotel	MATRIX TYPE			REQUIRED		ANALYSES				PAGE 1 of 1
		tainers vial HCL HCL	c Sulfuric	r sulfuric	litric Acid	er Plastic	oitesl¶ In	tic Sterile 8 oz. Soil	N No2503	TURNAROUND TIME
ureen Fisher 845-265-4400 845-265-4418	esibni (19)	Im04				нıл			m04	NORMAL
CLIENT NAME Tim Miller Assoc., Inc.	isW ətesW					2.		11671		auick
10 North Street, Cold Spring, New York 10516	SOLID st) of W (_	5501		_			VERBAL
7	utsW gn IM32 A(#OF COOLERS
SAMPLE SAMPLE IDENTIFICATION DATE TIME DATE	AQUEOL P (Drinki AQUEOL		NUMBER	S OF CO	NUMBER OF CONTAINERS SUBMITTED	S SUBA	ITTED			REMARKS
8		28								See Attached
/09 16/S Raleigh Hotel Well 2		28								See Attached
/09 01 45 Raleigh Hotel Well 3		28						_		See Attached
09 1.30 Raleigh Hotel Well 4	*	28								See Attached
09 00 Raleigh Hotel Well 4A		28						s		See Attached
TIME THE BY: (SIGNATURE) COMPANY DATE 10 TIME	IME 1235	RECEIVED BY: (SIGNATURE)	SIGNATU	RE)	-		8	COMPANY		DATE TIME
	шш	RECEIVED BY: (SIGNATURE) RECEIVED BY: (SIGNATURE)	BY: (SIGNATURE) BY: (SIGNATURE)	RE)			8 08	COMPANY		DATE TIME 9(11/09 1235 DATE TIME
** SHORT HOLDING TIME **						Field	Field Service Time:	Time.		
RECEIVED FOR LABORATORY BY: DATE TIME CUSTODY INTACT Co. (signature) YES NO	Cooler Temp.	LABORATORY REMARKS	REMARKS	<u> </u>		Hd	CL2	Rev	Reveiwed by	

LOGIN SAMPLE RECEIPT CHECK LIST

Client: Tim Miller Associates, Inc.

Job Number: 420-30027-1

Login Number: 30027

Question	T/F/NA	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	False	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	

ANALYTICAL REPORT

Job Number: 680-50880-1 Job Description: 420-30027

For: EnviroTest Laboratories Inc 315 Fullerton Avenue Newburgh, NY 12550 Attention: Ms. Janine Rader

Shula Ho

Approved for release. Sheila Hoffman Project Manager I 10/7/2009 3:06 PM

Sheila Hoffman Project Manager I sheila.hoffman@testamericainc.com 10/07/2009

cc: Ms. Renee Cusack Ms. Joyce Esposito Ms. Alicia Labare Debbie Rohl

The test results in this report meet NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted. Results pertain only to samples listed in this report. This report may not be reproduced, except in full, without the written approval of the laboratory. Questions should be directed to the person who signed this report.

Savannah Certifications and ID #s: A2LA: 0399.01; AL: 41450; ARDEQ: 88-0692; ARDOH; CA: 03217CA; CO; CT: PH0161; DE; FL: E87052; GA: 803; Guam; HI; IL: 200022; IN; IA: 353; KS: E-10322; KY EPPC: 90084; KY UST; LA DEQ: 30690; LA DHH: LA080008; ME: 2008022; MD: 250; MA: M-GA006; MI: 9925; MS; NFESC: 249; NV: GA00006; NJ: GA769; NM; NY: 10842; NC DWQ: 269; NC DHHS: 13701; PA: 68-00474; PR: GA00006; RI: LAO00244; SC: 98001001; TN: TN0296; TX: T104704185; USEPA: GA00006; VT: VT-87052; VA: 00302; WA; WV DEP: 094; WV DHHR: 9950 C; WI DNR: 999819810; WY/EPAR8: 8TMS-Q

TestAmerica Laboratories, Inc. TestAmerica Savannah 5102 LaRoche Avenue, Savannah, GA 31404 Tel (912) 354-7858 Fax (912) 352-0165 www.testamericainc.com

Comments

No additional comments.

Receipt

Method(s) 525.2: The following samples was received with insufficient preservation: The pH was adjusted prior to preparation.

All other samples were received in good condition within temperature requirements.

GC/MS Semi VOA

Method(s) 525.2: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch 148804 were outside control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria.

No other analytical or quality issues were noted.

HPLC

No analytical or quality issues were noted.

GC Semi VOA.

Method(s) 508: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for batch 680-148432 were outside control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria.

Method(s) 508: Two surrogates are used for this analysis. The laboratory's SOP allows one of these surrogates to be outside acceptance criteria without performing re-extraction/re-analysis. The following sample(s) contained an allowable number of surrogate compounds outside limits: Raleigh Hotel Well 1 (680-50880-2), Raleigh Hotel Well 2 (680-50880-3). These results have been reported and qualified. Sample matrix was present in the samples.

Method(s) 515.1: Surrogate recovery for the following sample(s) was outside the upper control limit: Raleigh Hotel Well 4A (680-50880-6). This sample did not contain any target analytes; therefore, re-extraction and/or re-analysis was not performed. Non-target matrix interference was present in the sample.

No other analytical or quality issues were noted.

General Chemistry

No analytical or quality issues were noted.

METHOD SUMMARY

Client: EnviroTest Laboratories Inc

Job Number: 680-50880-1

Description	Lab Location	Method	Preparation Method
Matrix: Water			
Semivolatile Organic Compounds (GC/MS)	TAL SAV	EPA 525.2	
Extraction of Semivolatile Compounds	TAL SAV		EPA 525.2
EDB, DBCP and 1,2,3-TCP (GC)	TAL SAV	EPA-DW 504.1	
Microextraction	TAL SAV		EPA-DW 504.1
Chlorinated Pesticides & PCBs (GC)	TAL SAV	EPA 508	
Liquid-Liquid Extraction (Separatory Funnel)	TAL SAV		EPA 508
Herbicides (GC)	TAL SAV	EPA-01 515.1	
Extraction of Chlorinated Acids	TAL SAV		EPA-DW 515.1
Disinfection By-Products, (IC)	TAL SAV	EPA 300.1B	
Disinfection By-Products, (IC)	TAL SAV	EPA 300.1B	
Carbamate Pesticides (HPLC)	TAL SAV	EPA 531.1	

Lab References:

TAL SAV = TestAmerica Savannah

Method References:

EPA = US Environmental Protection Agency

EPA-01 = "Methods For The Determination Of Nonconventional Pesticides In Municipal And Industrial Wastewater", EPA/821/R/92/002, April 1992.

EPA-DW = "Methods For The Determination Of Organic Compounds In Drinking Water", EPA/600/4-88/039, December 1988 And Its Supplements.

METHOD / ANALYST SUMMARY

Method	Analyst	Analyst ID
EPA 525.2	Davis, Nancy	ND
EPA 300.1B	Brazell, Connie	СВ
EPA 531.1	Brazell, Connie	СВ
EPA-DW 504.1	Meincke, Griffin	GM
EPA 508	Kellar, Joshua	JK
EPA-01 515.1	Meincke, Griffin	GM

SAMPLE SUMMARY

Client: EnviroTest Laboratories Inc

Job Number: 680-50880-1

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
680-50880-2	Raleigh Hotel Well 1	Drinking Water	09/17/2009 1030	09/18/2009 0939
680-50880-3	Raleigh Hotel Well 2	Drinking Water	09/17/2009 1015	09/18/2009 0939
680-50880-4	Raleigh Hotel Well 3	Drinking Water	09/17/2009 0945	09/18/2009 0939
680-50880-5	Raleigh Hotel Well 4	Drinking Water	09/17/2009 1130	09/18/2009 0939
680-50880-6	Raleigh Hotel Well 4A	Drinking Water	09/17/2009 1100	09/18/2009 0939

Client Sample ID: Raleigh Hotel Well 1 Lab Sample ID: 680-50880-2		Date Sampled: Date Received: Client Matrix:	09/17/2009 1030 09/18/2009 0939 Drinking Water	
Analyte	Result/Qualifier	Unit	MDL	Dilution
Method: 525.2		Date Analyzed:	09/26/2009 2134	
Prep Method: 525.2		Date Prepared:	09/25/2009 0810	
Alachlor	<0.033	ug/L	0.033	1.0
Atrazine	<0.022	ug/L	0.022	1.0
Benzo[a]pyrene	<0.029	ug/L	0.029	1.0
Bis(2-ethylhexyl) phthalate	<0.61	ug/L	0.61	1.0
Di(2-ethylhexyl)adipate	<0.61	ug/L	0.61	1.0
Hexachlorobenzene	<0.041	ug/L	0.041	1.0
Hexachlorocyclopentadiene	<0.042	ug/L	0.042	1.0
Butachlor	<0.032	ug/L	0.032	1.0
Simazine	<0.035	ug/L	0.035	1.0
Metolachlor	<0.020	ug/L	0.020	1.0
Metribuzin	<0.022	ug/L	0.022	1.0
Propachlor	<0.025	ug/L	0.025	1.0
Surrogate			Acceptance Limits	
Perylene-d12	82	%	70 - 130	
Method: 300.1B		Date Analyzed:	09/30/2009 0955	
Bromate	<2.6	ug/L	2.6	1.0
Surrogate			Acceptance Limits	
Dichloroacetic acid	104	%	90 - 115	
Method: 531.1		Date Analyzed:	09/29/2009 1238	
3-Hydroxycarbofuran	<0.31	ug/L	0.31	1.0
Oxamyl	<0.35	ug/L	0.35	1.0
Carbofuran	<0.43	ug/L	0.43	1.0
Aldicarb	<0.41	ug/L	0.41	1.0
Aldicarb sulfone	<0.25	ug/L	0.25	1.0
Aldicarb sulfoxide	<0.25	ug/L	0.25	1.0
Carbaryl	<0.31	ug/L	0.31	1.0
Methomyl	<0.49	ug/L	0.49	1.0
Method: 504.1		Date Analyzed:	09/21/2009 2000	
Prep Method: 504.1		Date Prepared:	09/21/2009 1351	
1,2-Dibromo-3-Chloropropane	<0.0030	ug/L	0.0030	1.0
Ethylene Dibromide	<0.0073	ug/L	0.0073	1.0
Surrogate			Acceptance Limits	
1,2,3-Trichloropropane-(Surr)	97	%	70 - 130	
Method: 508		Date Analyzed:	09/24/2009 2134	
Prep Method: 508		Date Prepared:	09/22/2009 0955	

Client Sample ID: Raleigh Hotel Well 1 Lab Sample ID: 680-50880-2			Date Sampled: Date Received: Client Matrix:	09/17/2009 1030 09/18/2009 0939 Drinking Water	
Analyte	Result/Qualifier	Unit		MDL	Dilution
Aldrin	<0.0014	ug/L		0.0014	1.0
Chlordane (technical)	<0.11	ug/L		0.11	1.0
Endrin	<0.0021	ug/L		0.0021	1.0
gamma-BHC (Lindane)	<0.0023	ug/L		0.0023	1.0
Heptachlor	<0.0059	ug/L		0.0059	1.0
Heptachlor epoxide	<0.0016	ug/L		0.0016	1.0
Methoxychlor	<0.0074	ug/L		0.0074	1.0
Dieldrin	<0.0015	ug/L		0.0015	1.0
PCB-1016	<0.064	ug/L		0.064	1.0
PCB-1221	<0.048	ug/L		0.048	1.0
PCB-1232	<0.092	ug/L		0.092	1.0
PCB-1242	<0.13	ug/L		0.13	1.0
PCB-1248	<0.046	ug/L		0.046	1.0
PCB-1254	<0.048	ug/L		0.048	1.0
PCB-1260	<0.047	ug/L		0.047	1.0
Toxaphene	<0.055	ug/L		0.055	1.0
Polychlorinated biphenyls, Total	<0.042	ug/L		0.042	1.0
Surrogate				Acceptance Limits	
DCB Decachlorobiphenyl	78	%		70 - 130	
Tetrachloro-m-xylene	15000	EX %		70 - 130	
Method: 515.1		Da	te Analyzed:	09/29/2009 1853	
Prep Method: 515.1			te Prepared:	09/28/2009 0858	
2,4-D	<0.037	ug/L	•	0.037	1.0
Dalapon	<1.0	ug/L		1.0	1.0
Dinoseb	<0.15	ug/L		0.15	1.0
Pentachlorophenol	<0.038	ug/L		0.038	1.0
Picloram	<0.077	ug/L		0.077	1.0
Dicamba	<0.085	ug/L		0.085	1.0
Silvex (2,4,5-TP)	<0.060	ug/L		0.060	1.0
Surrogate		-		Acceptance Limits	
2,4-Dichlorophenylacetic acid	102	%		70 - 130	

Client Sample ID: Lab Sample ID:	Raleigh Hotel Well 1 680-50880-2		Date Sampled: Date Received: Client Matrix:	09/17/2009 1030 09/18/2009 0939 Drinking Water	
Analyte		Result/Qualifier	Unit	RL	Dilution
Method: 300.1B			Date Analyzed:	09/29/2009 2141	
Chlorite		<20	ug/L	20	1.0
Surrogate				Acceptance Limits	
Dichloroacetic acid		103	%	90 - 115	

Client Sample ID: Raleigh Hotel Well Lab Sample ID: 680-50880-3	2	Date Sampled: Date Received: Client Matrix:	09/17/2009 1015 09/18/2009 0939 Drinking Water	
Analyte	Result/Qualifier	Unit	MDL	Dilution
Method: 525.2		Date Analyzed:	09/26/2009 2156	
Prep Method: 525.2		Date Prepared:	09/25/2009 0810	
Alachlor	<0.033	ug/L	0.033	1.0
Atrazine	<0.022	ug/L	0.022	1.0
Benzo[a]pyrene	<0.029	ug/L	0.029	1.0
Bis(2-ethylhexyl) phthalate	0.82	ug/L	0.61	1.0
Di(2-ethylhexyl)adipate	<0.61	ug/L	0.61	1.0
Hexachlorobenzene	<0.041	ug/L	0.041	1.0
Hexachlorocyclopentadiene	<0.042	ug/L	0.042	1.0
Butachlor	<0.032	ug/L	0.032	1.0
Simazine	<0.035	ug/L	0.035	1.0
Metolachlor	<0.020	ug/L	0.020	1.0
Metribuzin	<0.022	ug/L	0.022	1.0
Propachlor	<0.025	ug/L	0.025	1.0
Surrogate			Acceptance Limits	
Perylene-d12	70	%	70 - 130	
Method: 300.1B		Date Analyzed:	09/30/2009 1025	
Bromate	<2.6	ug/L	2.6	1.0
Surrogate			Acceptance Limits	
Dichloroacetic acid	103	%	90 - 115	
Method: 531.1		Date Analyzed:	09/29/2009 1318	
3-Hydroxycarbofuran	<0.31	ug/L	0.31	1.0
Oxamyl	<0.35	ug/L	0.35	1.0
Carbofuran	<0.43	ug/L	0.43	1.0
Aldicarb	<0.41	ug/L	0.41	1.0
Aldicarb sulfone	<0.25	ug/L	0.25	1.0
Aldicarb sulfoxide	<0.25	ug/L	0.25	1.0
Carbaryl	<0.31	ug/L	0.31	1.0
Methomyl	<0.49	ug/L	0.49	1.0
Method: 504.1		Date Analyzed:	09/21/2009 2010	
Prep Method: 504.1		Date Prepared:	09/21/2009 1351	
1,2-Dibromo-3-Chloropropane	<0.0030	ug/L	0.0030	1.0
Ethylene Dibromide	<0.0072	ug/L	0.0072	1.0
Surrogate			Acceptance Limits	
1,2,3-Trichloropropane-(Surr)	93	%	70 - 130	
Method: 508		Date Analyzed:	09/24/2009 2157	
Prep Method: 508		Date Prepared:	09/22/2009 0955	

Addrin <0.0014	Client Sample ID: Lab Sample ID:	Raleigh Hotel Well 2 680-50880-3				Date Sampled: Date Received: Client Matrix:	09/17/2009 1015 09/18/2009 0939 Drinking Water	
Chlordane (technical) <0.11	Analyte		Result/Qualifi	ier	Unit		MDL	Dilution
Endrin <0.0021 ug/L 0.0021 1.0 garma-BHC (Lindane) <0.0023	Aldrin		<0.0014		ug/L		0.0014	1.0
gamma-BHC (Lindane) <0.0023 ug/L 0.0023 1.0 Heptachlor <0.0059	Chlordane (technical)		<0.11		ug/L		0.11	1.0
Heptachlor <0.0059	Endrin		<0.0021		ug/L		0.0021	1.0
Heptachlor <0.0059	gamma-BHC (Lindane))	< 0.0023		ug/L		0.0023	1.0
Methoxychlor <0.0074 ug/L 0.0074 1.0 Dieldrin <0.0015			<0.0059		ug/L		0.0059	1.0
Dieldrin <0.0015 ug/L 0.0015 1.0 PCB-1016 <0.064	Heptachlor epoxide		<0.0016		ug/L		0.0016	1.0
PCB-1016 <0.064	Methoxychlor		<0.0074		ug/L		0.0074	1.0
PCB-1221 <0.048	Dieldrin		<0.0015		ug/L		0.0015	1.0
PCB-1232 <0.092 ug/L 0.092 1.0 PCB-1242 <0.13	PCB-1016		<0.064		ug/L		0.064	1.0
PCB-1242 <0.13	PCB-1221		<0.048		ug/L		0.048	1.0
PCB-1248 <0.046	PCB-1232		<0.092		-		0.092	1.0
PCB-1254 <0.048 ug/L 0.048 1.0 PCB-1260 <0.047	PCB-1242		<0.13		ug/L		0.13	1.0
PCB-1260 <0.047 ug/L 0.047 1.0 Toxaphene <0.055	PCB-1248		<0.046		ug/L		0.046	1.0
Toxaphene <0.055 ug/L 0.055 1.0 Polychlorinated biphenyls, Total <0.042	PCB-1254		<0.048		ug/L		0.048	1.0
Polychlorinated biphenyls, Total <0.042 ug/L 0.042 1.0 Surrogate Acceptance Limits DCB Decachlorobiphenyl 126 % 70 - 130 Tetrachloro-m-xylene 13900 E X % 70 - 130 Method: 515.1 Date Analyzed: 09/29/2009 1910 Prep Method: 515.1 Date Prepared: 09/28/2009 0858 2,4-D <0.037	PCB-1260		<0.047		ug/L		0.047	1.0
Surrogate Acceptance Limits DCB Decachlorobiphenyl 126 % 70 - 130 Tetrachloro-m-xylene 13900 E X % 70 - 130 Method: 515.1 Date Analyzed: 09/29/2009 1910 Prep Method: 515.1 Date Prepared: 09/28/2009 0858 2,4-D <0.037	Toxaphene		<0.055		ug/L		0.055	1.0
DCB Decachlorobiphenyl 126 % 70 - 130 Tetrachloro-m-xylene 13900 E X % 70 - 130 Method: 515.1 Date Analyzed: 09/29/2009 1910 Prep Method: 515.1 Date Prepared: 09/28/2009 0858 2,4-D <0.037	Polychlorinated biphen	yls, Total	<0.042		ug/L		0.042	1.0
Tetrachloro-m-xylene 13900 E X % 70 - 130 Method: 515.1 Date Analyzed: 09/29/2009 1910 Prep Method: 515.1 Date Prepared: 09/28/2009 0858 2,4-D <0.037 ug/L 0.037 1.0 Dalapon <1.0 ug/L 1.0 1.0 Dinoseb <0.15 ug/L 0.15 1.0 Pentachlorophenol <0.038 ug/L 0.038 1.0 Picloram <0.078 ug/L 0.078 1.0 Dicamba <0.086 ug/L 0.086 1.0 Silvex (2,4,5-TP) <0.061 ug/L 0.061 1.0	Surrogate						Acceptance Limits	
Tetrachloro-m-xylene 13900 E X % 70 - 130 Method: 515.1 Date Analyzed: 09/29/2009 1910 Prep Method: 515.1 Date Prepared: 09/28/2009 0858 2,4-D <0.037 ug/L 0.037 1.0 Dalapon <1.0 ug/L 1.0 1.0 Dinoseb <0.15 ug/L 0.15 1.0 Pentachlorophenol <0.038 ug/L 0.038 1.0 Picloram <0.078 ug/L 0.078 1.0 Dicamba <0.086 ug/L 0.086 1.0 Silvex (2,4,5-TP) <0.061 ug/L 0.061 1.0	DCB Decachlorobipher	lyl	126		%		70 - 130	
Prep Method: 515.1 Date Prepared: 09/28/2009 0858 2,4-D <0.037			13900	ΕX	%		70 - 130	
Prep Method: 515.1Date Prepared:09/28/200908582,4-D<0.037	Method: 515.1				Da	ate Analyzed:	09/29/2009 1910	
2,4-D<0.037ug/L0.0371.0Dalapon<1.0	Prep Method: 515.1					•	09/28/2009 0858	
Dinoseb<0.15ug/L0.151.0Pentachlorophenol<0.038	•		< 0.037			•	0.037	1.0
Dinoseb<0.15ug/L0.151.0Pentachlorophenol<0.038	Dalapon		<1.0		ug/L		1.0	1.0
Pentachlorophenol<0.038ug/L0.0381.0Picloram<0.078	Dinoseb		<0.15		-		0.15	1.0
Picloram<0.078ug/L0.0781.0Dicamba<0.086	Pentachlorophenol		<0.038		-		0.038	1.0
Dicamba <0.086 ug/L 0.086 1.0 Silvex (2,4,5-TP) <0.061	•				-		0.078	
Silvex (2,4,5-TP) <0.061 ug/L 0.061 1.0	Dicamba		<0.086		-		0.086	1.0
	Silvex (2,4,5-TP)				-			
Surrogate Acceptance Limits	Surrogate						Acceptance Limits	
2,4-Dichlorophenylacetic acid 92 % 70 - 130	-	ic acid	92		%		•	

Client Sample ID: Lab Sample ID:	Raleigh Hotel Well 2 680-50880-3		Date Sampled: Date Received: Client Matrix:	09/17/2009 1015 09/18/2009 0939 Drinking Water	
Analyte		Result/Qualifier	Unit	RL	Dilution
Method: 300.1B			Date Analyzed:	09/29/2009 2313	
Chlorite		<20	ug/L	20	1.0
Surrogate				Acceptance Limits	
Dichloroacetic acid		108	%	90 - 115	

Client Sample ID:Raleigh Hotel Well 3Lab Sample ID:680-50880-4		Date Sampled: Date Received: Client Matrix:	09/17/2009 0945 09/18/2009 0939 Drinking Water	
Analyte	Result/Qualifier	Unit	MDL	Dilution
Method: 525.2		Date Analyzed:	09/26/2009 2218	
Prep Method: 525.2		Date Prepared:	09/25/2009 0810	
Alachlor	<0.033	ug/L	0.033	1.0
Atrazine	<0.022	ug/L	0.022	1.0
Benzo[a]pyrene	<0.029	ug/L	0.029	1.0
Bis(2-ethylhexyl) phthalate	<0.61	ug/L	0.61	1.0
Di(2-ethylhexyl)adipate	<0.61	ug/L	0.61	1.0
Hexachlorobenzene	<0.041	ug/L	0.041	1.0
Hexachlorocyclopentadiene	<0.042	ug/L	0.042	1.0
Butachlor	<0.032	ug/L	0.032	1.0
Simazine	<0.035	ug/L	0.035	1.0
Metolachlor	<0.020	ug/L	0.020	1.0
Metribuzin	<0.022	ug/L	0.022	1.0
Propachlor	<0.025	ug/L	0.025	1.0
Surrogate			Acceptance Limits	
Perylene-d12	93	%	70 - 130	
Method: 300.1B		Date Analyzed:	09/30/2009 1056	
Bromate	<2.6	ug/L	2.6	1.0
Surrogate			Acceptance Limits	
Dichloroacetic acid	103	%	90 - 115	
Method: 531.1		Date Analyzed:	09/29/2009 1357	
3-Hydroxycarbofuran	<0.31	ug/L	0.31	1.0
Oxamyl	<0.35	ug/L	0.35	1.0
Carbofuran	<0.43	ug/L	0.43	1.0
Aldicarb	<0.41	ug/L	0.41	1.0
Aldicarb sulfone	<0.25	ug/L	0.25	1.0
Aldicarb sulfoxide	<0.25	ug/L	0.25	1.0
Carbaryl	<0.31	ug/L	0.31	1.0
Methomyl	<0.49	ug/L	0.49	1.0
Method: 504.1		Date Analyzed:	09/21/2009 2019	
Prep Method: 504.1		Date Prepared:	09/21/2009 1351	
1,2-Dibromo-3-Chloropropane	<0.0031	ug/L	0.0031	1.0
Ethylene Dibromide	<0.0074	ug/L	0.0074	1.0
Surrogate			Acceptance Limits	
1,2,3-Trichloropropane-(Surr)	88	%	70 - 130	
Method: 508		Date Analyzed:	09/24/2009 2220	
Prep Method: 508		Date Prepared:	09/22/2009 0955	

Client Sample ID: Lab Sample ID:	Raleigh Hotel Well 3 680-50880-4			Date Sampled: Date Received: Client Matrix:	09/17/2009 0945 09/18/2009 0939 Drinking Water	
Analyte		Result/Qualifier	Unit		MDL	Dilution
Aldrin		<0.0014	ug/L		0.0014	1.0
Chlordane (technical)		<0.12	ug/L		0.12	1.0
Endrin		<0.0021	ug/L		0.0021	1.0
gamma-BHC (Lindane)		<0.0023	ug/L		0.0023	1.0
Heptachlor		<0.0061	ug/L		0.0061	1.0
Heptachlor epoxide		<0.0016	ug/L		0.0016	1.0
Methoxychlor		<0.0075	ug/L		0.0075	1.0
Dieldrin		<0.0015	ug/L		0.0015	1.0
PCB-1016		<0.065	ug/L		0.065	1.0
PCB-1221		<0.049	ug/L		0.049	1.0
PCB-1232		<0.094	ug/L		0.094	1.0
PCB-1242		<0.13	ug/L		0.13	1.0
PCB-1248		<0.047	ug/L		0.047	1.0
PCB-1254		<0.049	ug/L		0.049	1.0
PCB-1260		<0.048	ug/L		0.048	1.0
Toxaphene		<0.056	ug/L		0.056	1.0
Polychlorinated bipheny	/ls, Total	<0.043	ug/L		0.043	1.0
Surrogate					Acceptance Limits	
DCB Decachlorobiphen	yl	89	%		70 - 130	
Tetrachloro-m-xylene		93	%		70 - 130	
Method: 515.1			Da	te Analyzed:	09/29/2009 1929	
Prep Method: 515.1			Da	te Prepared:	09/28/2009 0858	
2,4-D		<0.036	ug/L		0.036	1.0
Dalapon		<0.98	ug/L		0.98	1.0
Dinoseb		<0.15	ug/L		0.15	1.0
Pentachlorophenol		<0.037	ug/L		0.037	1.0
Picloram		<0.075	ug/L		0.075	1.0
Dicamba		<0.083	ug/L		0.083	1.0
Silvex (2,4,5-TP)		<0.059	ug/L		0.059	1.0
Surrogate					Acceptance Limits	
2,4-Dichlorophenylaceti	c acid	130	%		70 - 130	

Client Sample ID: Lab Sample ID:	Raleigh Hotel Well 3 680-50880-4		Date Sampled: Date Received: Client Matrix:	09/17/2009 0945 09/18/2009 0939 Drinking Water	
Analyte		Result/Qualifier	Unit	RL	Dilution
Method: 300.1B			Date Analyzed:	09/30/2009 0044	
Chlorite		<20	ug/L	20	1.0
Surrogate				Acceptance Limits	
Dichloroacetic acid		105	%	90 - 115	

Client Sample ID:Raleigh Hotel Well 4Lab Sample ID:680-50880-5		Date Sampled: Date Received: Client Matrix:	09/17/2009 1130 09/18/2009 0939 Drinking Water	
Analyte	Result/Qualifier	Unit	MDL	Dilution
Method: 525.2		Date Analyzed:	09/26/2009 2240	
Prep Method: 525.2		Date Prepared:	09/25/2009 0810	
Alachlor	<0.033	ug/L	0.033	1.0
Atrazine	<0.022	ug/L	0.022	1.0
Benzo[a]pyrene	<0.029	ug/L	0.029	1.0
Bis(2-ethylhexyl) phthalate	<0.61	ug/L	0.61	1.0
Di(2-ethylhexyl)adipate	<0.61	ug/L	0.61	1.0
Hexachlorobenzene	<0.041	ug/L	0.041	1.0
Hexachlorocyclopentadiene	<0.042	ug/L	0.042	1.0
Butachlor	<0.032	ug/L	0.032	1.0
Simazine	<0.035	ug/L	0.035	1.0
Metolachlor	<0.020	ug/L	0.020	1.0
Metribuzin	<0.022	ug/L	0.022	1.0
Propachlor	<0.025	ug/L	0.025	1.0
Surrogate			Acceptance Limits	
Perylene-d12	101	%	70 - 130	
Method: 300.1B		Date Analyzed:	09/30/2009 1125	
Bromate	<2.6	ug/L	2.6	1.0
Surrogate			Acceptance Limits	
Dichloroacetic acid	104	%	90 - 115	
Method: 531.1		Date Analyzed:	09/29/2009 1555	
3-Hydroxycarbofuran	<0.31	ug/L	0.31	1.0
Oxamyl	<0.35	ug/L	0.35	1.0
Carbofuran	<0.43	ug/L	0.43	1.0
Aldicarb	<0.41	ug/L	0.41	1.0
Aldicarb sulfone	<0.25	ug/L	0.25	1.0
Aldicarb sulfoxide	<0.25	ug/L	0.25	1.0
Carbaryl	<0.31	ug/L	0.31	1.0
Methomyl	<0.49	ug/L	0.49	1.0
Method: 504.1		Date Analyzed:	09/21/2009 2029	
Prep Method: 504.1		Date Prepared:	09/21/2009 1351	
1,2-Dibromo-3-Chloropropane	<0.0030	ug/L	0.0030	1.0
Ethylene Dibromide	<0.0073	ug/L	0.0073	1.0
Surrogate			Acceptance Limits	
1,2,3-Trichloropropane-(Surr)	95	%	70 - 130	
Method: 508		Date Analyzed:	09/24/2009 2243	
Prep Method: 508		Date Prepared:	09/22/2009 0955	

Ms. Janine Rader EnviroTest Laboratories Inc 315 Fullerton Avenue Newburgh, NY 12550

Client Sample ID: Lab Sample ID:	Raleigh Hotel Well 4 680-50880-5		Date Sampled: Date Received: Client Matrix:	09/17/2009 1130 09/18/2009 0939 Drinking Water	
Analyte		Result/Qualifier	Unit	MDL	Dilution
Aldrin		<0.0014	ug/L	0.0014	1.0
Chlordane (technical)		<0.11	ug/L	0.11	1.0
Endrin		<0.0021	ug/L	0.0021	1.0
gamma-BHC (Lindane)		<0.0023	ug/L	0.0023	1.0
Heptachlor		<0.0059	ug/L	0.0059	1.0
Heptachlor epoxide		<0.0016	ug/L	0.0016	1.0
Methoxychlor		<0.0074	ug/L	0.0074	1.0
Dieldrin		<0.0015	ug/L	0.0015	1.0
PCB-1016		<0.064	ug/L	0.064	1.0
PCB-1221		<0.048	ug/L	0.048	1.0
PCB-1232		<0.092	ug/L	0.092	1.0
PCB-1242		<0.13	ug/L	0.13	1.0
PCB-1248		<0.046	ug/L	0.046	1.0
PCB-1254		<0.048	ug/L	0.048	1.0
PCB-1260		<0.047	ug/L	0.047	1.0
Toxaphene		<0.055	ug/L	0.055	1.0
Polychlorinated bipheny	yls, Total	<0.042	ug/L	0.042	1.0
Surrogate				Acceptance Limits	
DCB Decachlorobipher	nyl	81	%	70 - 130	
Tetrachloro-m-xylene		80	%	70 - 130	
Method: 515.1			Date Analyzed:	09/29/2009 1947	
Prep Method: 515.1			Date Prepared:	09/28/2009 0858	
2,4-D		<0.036	ug/L	0.036	1.0
Dalapon		<0.96	ug/L	0.96	1.0
Dinoseb		<0.14	ug/L	0.14	1.0

2,4-Dichlorophenylacetic acid	98	%	70 - 130
Surrogate			Acceptance Limits
Silvex (2,4,5-TP)	<0.058	ug/L	0.058
Dicamba	<0.082	ug/L	0.082
Picloram	<0.074	ug/L	0.074
Pentachlorophenol	<0.037	ug/L	0.037

1.0 1.0 1.0 1.0

Client Sample ID: Lab Sample ID:	Raleigh Hotel Well 4 680-50880-5		Date Sampled: Date Received: Client Matrix:	09/17/2009 1130 09/18/2009 0939 Drinking Water	
Analyte		Result/Qualifier	Unit	RL	Dilution
Method: 300.1B			Date Analyzed:	09/30/2009 0115	
Chlorite		<20	ug/L	20	1.0
Surrogate				Acceptance Limits	
Dichloroacetic acid		100	%	90 - 115	

Client Sample ID: Raleigh Hotel Well 4A Lab Sample ID: 680-50880-6		Date Sampled: Date Received: Client Matrix:	09/17/2009 1100 09/18/2009 0939 Drinking Water	
Analyte	Result/Qualifier	Unit	MDL	Dilution
Method: 525.2		Date Analyzed:	09/26/2009 2301	
Prep Method: 525.2		Date Prepared:	09/25/2009 0810	
Alachlor	<0.033	ug/L	0.033	1.0
Atrazine	<0.022	ug/L	0.022	1.0
Benzo[a]pyrene	<0.029	ug/L	0.029	1.0
Bis(2-ethylhexyl) phthalate	<0.61	ug/L	0.61	1.0
Di(2-ethylhexyl)adipate	<0.61	ug/L	0.61	1.0
Hexachlorobenzene	<0.041	ug/L	0.041	1.0
Hexachlorocyclopentadiene	<0.042	ug/L	0.042	1.0
Butachlor	<0.032	ug/L	0.032	1.0
Simazine	<0.035	ug/L	0.035	1.0
Metolachlor	<0.020	ug/L	0.020	1.0
Metribuzin	<0.022	ug/L	0.022	1.0
Propachlor	<0.025	ug/L	0.025	1.0
Surrogate			Acceptance Limits	
Perylene-d12	90	%	70 - 130	
Method: 300.1B		Date Analyzed:	09/30/2009 1155	
Bromate	<2.6	ug/L	2.6	1.0
Surrogate			Acceptance Limits	
Dichloroacetic acid	102	%	90 - 115	
Method: 531.1		Date Analyzed:	09/29/2009 1634	
3-Hydroxycarbofuran	<0.31	ug/L	0.31	1.0
Oxamyl	<0.35	ug/L	0.35	1.0
Carbofuran	<0.43	ug/L	0.43	1.0
Aldicarb	<0.41	ug/L	0.41	1.0
Aldicarb sulfone	<0.25	ug/L	0.25	1.0
Aldicarb sulfoxide	<0.25	ug/L	0.25	1.0
Carbaryl	<0.31	ug/L	0.31	1.0
Methomyl	<0.49	ug/L	0.49	1.0
Method: 504.1		Date Analyzed:	09/21/2009 2039	
Prep Method: 504.1		Date Prepared:	09/21/2009 1351	
1,2-Dibromo-3-Chloropropane	<0.0030	ug/L	0.0030	1.0
Ethylene Dibromide	<0.0072	ug/L	0.0072	1.0
Surrogate			Acceptance Limits	
1,2,3-Trichloropropane-(Surr)	91	%	70 - 130	
Method: 508		Date Analyzed:	09/24/2009 2307	
Prep Method: 508		Date Prepared:	09/22/2009 0955	

Dilution

Client Sample ID: Lab Sample ID:	Raleigh Hotel Well 4A 680-50880-6		Date Sampled: Date Received: Client Matrix:	
Analyte		Result/Qualifier	Unit	MDL

, analyte	i toodia qualinoi	Unit		Bhation
Aldrin	<0.0014	ug/L	0.0014	1.0
Chlordane (technical)	<0.11	ug/L	0.11	1.0
Endrin	<0.0021	ug/L	0.0021	1.0
gamma-BHC (Lindane)	<0.0023	ug/L	0.0023	1.0
Heptachlor	<0.0059	ug/L	0.0059	1.0
Heptachlor epoxide	<0.0016	ug/L	0.0016	1.0
Methoxychlor	<0.0074	ug/L	0.0074	1.0
Dieldrin	<0.0015	ug/L	0.0015	1.0
PCB-1016	<0.064	ug/L	0.064	1.0
PCB-1221	<0.048	ug/L	0.048	1.0
PCB-1232	<0.092	ug/L	0.092	1.0
PCB-1242	<0.13	ug/L	0.13	1.0
PCB-1248	<0.046	ug/L	0.046	1.0
PCB-1254	<0.048	ug/L	0.048	1.0
PCB-1260	<0.047	ug/L	0.047	1.0
Toxaphene	<0.055	ug/L	0.055	1.0
Polychlorinated biphenyls, Total	<0.042	ug/L	0.042	1.0
Surrogate		Acceptance Limits		
DCB Decachlorobiphenyl	92	%	70 - 130	
Tetrachloro-m-xylene	73	%	70 - 130	
Method: 515.1		Date Analyzed:	09/29/2009 2006	
Prep Method: 515.1		Date Prepared:	09/28/2009 0858	
2,4-D	<0.036	ug/L	0.036	1.0
Dalapon	<0.96	ug/L	0.96	1.0
Dinoseb	<0.14	ug/L	0.14	1.0
Pentachlorophenol	<0.037	ug/L	0.037	1.0
Picloram	<0.074	ug/L	0.074	1.0
Dicamba	<0.082	ug/L	0.082	1.0
Silvex (2,4,5-TP)	<0.058	ug/L	0.058	1.0
Surrogate			Acceptance Limits	
2,4-Dichlorophenylacetic acid	164 X	%	70 - 130	

Client Sample ID: Lab Sample ID:	Raleigh Hotel Well 4A 680-50880-6		Date Sampled: Date Received: Client Matrix:	09/17/2009 1100 09/18/2009 0939 Drinking Water	
Analyte		Result/Qualifier	Unit	RL	Dilution
Method: 300.1B			Date Analyzed:	10/01/2009 1324	
Chlorite		<20	ug/L	20	1.0
Surrogate				Acceptance Limits	
Dichloroacetic acid		105	%	90 - 115	

DATA REPORTING QUALIFIERS

Job Number: 680-50880-1

Lab Section	Qualifier	Description
GC Semi VOA		
	E X	Result exceeded calibration range. Surrogate exceeds the control limits

Newburgh, NY 12550 Phone (845) 562-0890 Fax (845) 562-0841			9	Chain of Custody Record	af Cus	ştod.	v Re	хоо						Laboratories Inc.
Client Information (Sub Contract Lab)	Sampler			Roh Roh	Lab PM: Rohl, Debra R					Carrier Tracking No(s)	cking No(s		COC No: 420-4125.1	
Client Contect Shipping/Receiving	Phone:			E-Mail dbay	E-Mait: dbayer@envirotestlaboratories.com	otestlabu	oratories	s.com					Page: Page 1 of 1	· ·
Company: TestAmerica Analytical Testing Corp.							Ā	nalvsi	s Reo	Analvsis Requested			STL Job #: 420-30027-1	3
Address: 5102 LaRoche Ave.,	Due Date Requested: 9/29/2009	eđ:			Tete		MO	, 			-		Preservation Codes	ŝ
City: Savannah	TAT Requested (d	:(s/e			n uj s			so					C - Zh Acet	M - Hexane N - None Is O - AsNaO2
Sate, Zp: 6A, 31404					ticide.	sp		quebu					ເດີຟ	
Prone	1# Od					iəA b								
Email:	:#0#;					មានពាក								ACIO
Project Name: Tim Miller Associates, Inc.	Project #: 42001187				1.10 5.	9140 9							EDTA L-EDA	
Sile:	SSOW#:				λ}:as	919 /L:							onen Otter	-
		Sample	Sample Type (C=comp,	Matrix (Viewater, Sepoila, Ormateloil,	2 berenia bie Micin mon DAATNOOBI	раятиора	IBCONTRAC	DAATNODBI DAATNODBI	DAATNODBI				Jadmun Isi	
sample losnification Client ID (Lab ID)	Sample Date	1 Ing	G=grab) sr-taue, A-4	BT-TISTUE, A-AIT TIOD CODE:		IS S	-	1375		A CONTRACT				Special Instructions/Note:
Raleigh Hotel Well 1 (420-30027-1)	60/21/6			Water		×	X X	×	×				10	
Raleigh Hotel Well 2 (420-30027-2)	60/11/6	- 10:15		Water		X	XX	××	×				9 0	
Raleigh Hotel Well 3 (420-30027-3)	9/17/09	9:45		Water		X	xx	××	×				10L	A CANADA CANA
Rateigh Hotel Well 4 (420-30027-4)	8/17/09	11:30	******	. Water	×	×	XX	×	××				10	
Rateigh Hotel Well 4A (420-30027-5)	8/17/09	11:00		Water			××	× ×	×				10	and a second
							,						1. X.	
				:										
				-									्रद्य	
[] je	Poison B	Unknown	Radiological		Samp	le Disp Return	osal (A To Clien	fee mi	a a l	assessed if san Disposal By Lab	if samp 3v Lab	les are re	tained longer Archive For	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) — Return To Client Disposal By Lab — Archive For Months
1, 311, 1V, OI					Specie	al Instru	Special Instructions/QC Requirements:	C Requ	iremen	12	ļ			
Empty Kit Relinquished by:		Date:			Time:					Metho	Method of Shipment:	nent:		
Heliaguestady;	Date/Time: 09	Σ	00,	Company Company	Re	Received by:	.,				Date	Çate/Time:		Company
alinquished by:	Dale/Time:			Company	9 2	Received by:					Date	Date/Fime;		Company
	Date/Time:			Company	Re	Received by.					Dat	Date/Time:		Company
Custody Seats Infact Reprody Seal No 1														~

Client: EnviroTest Laboratories Inc

Login Number: 50880

Creator: Conner, Keaton List Number: 1

Question	T / F/ NA	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	N/A	
Samples do not require splitting or compositing.	N/A	
Is the Field Sampler's name present on COC?	False	
Sample Preservation Verified	True	
Sample Preservation Verified	Irue	

Job Number: 680-50880-1

List Source: TestAmerica Savannah

THE LEADER IN ENVIRONMENTAL TESTING

TestAmerica Laboratories, Inc.

ANALYTICAL REPORT

Radiological Testing

Lot #: F9I180226

Debra Rohl

EnviroTest Laboratories Inc 315 Fullerton Avenue Newburgh, NY 12550

TESTAMERICA LABORATORIES, INC.

Jung Emit

for Kay Clay Project Manager

October 7, 2009

1 of 19

Case Narrative LOT NUMBER: F9I180226

This report contains the analytical results for the five samples received under chain of custody by TestAmerica St. Louis on September 18, 2009. These samples are associated with your Radiological Testing project.

The analytical results included in this report meet all applicable quality control procedure requirements. except as noted on the following page.

The test results in this report meet all NELAP requirements for parameters in which accreditations are held by TestAmerica St. Louis. Any exceptions to NELAP requirements are noted in the case narrative. TestAmerica St. Louis' Florida certification number is E87689. The case narrative is an integral part of this report.

This report shall not be reproduced, except in full, without the written approval of the laboratory.

All chemical analysis results are based upon sample as received, wet weight, unless noted otherwise. All radiochemistry results are based upon sample as dried and ground with the exception of tritium, unless requested wet weight by the client.

Observations/Nonconformances

Reference the chain of custody and condition upon receipt report for any variations on receipt conditions and temperature of samples on receipt.

Gross Alpha and Beta Method EPA 900.0 MOD

The Gross Alpha sample duplicate results were (188.61%) % RPD > 40% and RER >1.0 (6.693E+000). Samples were sent back for re-extraction. This excursion is due to a matrix spike duplicate that was not spiked. The matrix spike was spiked resulting in poor duplication. The re-extracted results are within the required RPD/RER requirements. The results will be reported.

Affected Samples:

F9I180226 (1): RALEIGH HOTEL WELL 1 (420-30027-1) F9I180226 (2): RALEIGH HOTEL WELL 2 (420-30027-2) F9I180226 (3): RALEIGH HOTEL WELL 3 (420-30027-3) F9I180226 (4): RALEIGH HOTEL WELL 4 (420-30027-4) F9I180226 (5): RALEIGH HOTEL WELL 4A (420-30027-5)

METHODS SUMMARY

F9I180226

PARAMETER	ANALYTICAL METHOD	PREPARATION METHOD
Gross Alpha/Beta EPA 900 Radium-226 by GFPC Radium-228 by GFPC Total Uranium By Laser Ph osphorimetry	EPA 900.0 MOD EPA 903.0 MOD EPA 904 MOD ASTM 5174-91	EPA 900.0

References:

ASTM Annual Book Of ASTM Standards.

EPA "EASTERN ENVIRONMENTAL RADIATION FACILITY RADIOCHEMISTRY PROCEDURES MANUAL" US EPA EPA 520/5-84-006 AUGUST 1984

SAMPLE SUMMARY

F9I180226

WO # SAMPLE#	CLIENT SAMPLE ID	SAMPLED DATE	SAMP TIME
LK32L 001 LK321 002 LK323 003 LK326 004 LK328 005	RALEIGH HOTEL WELL 1 (420-30027-1) RALEIGH HOTEL WELL 2 (420-30027-2) RALEIGH HOTEL WELL 3 (420-30027-3) RALEIGH HOTEL WELL 4 (420-30027-4) RALEIGH HOTEL WELL 4A (420-30027-5)	09/17/09 09/17/09 09/17/09 09/17/09 09/17/09	10:15 09:45 11:30

NOTE(S):

- The analytical results of the samples listed above are presented on the following pages.

- All calculations are performed before rounding to avoid round-off errors in calculated results.

- Results noted as "ND" were not detected at or above the stated limit.

- This report must not be reproduced, except in full, without the written approval of the laboratory.

- Results for the following parameters are never reported on a dry weight basis; color, corrosivity, density, flashpoint, ignitability, layers, odor,

paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

EnviroTest Laboratories Inc

Client Sample ID: RALEIGH HOTEL WELL 1 (420-30027-1)

Radiochemistry

Lab Sample ID: F9I180226-001 Work Order: LK32L Matrix: WATER		26-001			Date Collec Date Receiv		09/17/09 103 09/18/09 080	=
Parameter	Result	Qual	Count Uncert.	Total Uncert. (2 o+/-)	RL	MDC	Frep Date	Analysis Date
Radium 226 by E	PA 903.0	MOD		p	Ci/L	Bat	ch # 9261464	Yld % 106
Radium (226)	0,59	J		0.18	1.00	0.14	09/18/0	9 10/05/09
Radium 228 by GF	PC EPA 90	4 MOD		p	Ci/L	Bat	ch # 9261465	Yld % 102
Radium 228	0.28	σ		0.23	1.00	0.37	09/18/0	9 10/05/09
Total Uranium by	KPA ASTM	5174-91		uq	g/L	Bat	ch # 9272109	Yld %
Total Uranium	3.88			0.40	1.00	0.31	09/29/0	9 10/03/09
Gross Alpha/Beta	EPA 900			p	Ci/L	Bat		Yld %
Gross Alpha	5.3			1.6	3.0	1.3	09/25/0	9 09/29/09
Gross Beta	4.6			1.4	4.0	1.8	09/25/0	9 09/29/09

NOTE (S)

Data are incomplete without the case narrative.

MDC is determined by instrument performance only. Bold results are greater than the MDC

J Result is greater than sample detection limit but less than stated reporting limit.

U Result is less than the sample detection limit.

EnviroTest Laboratories Inc

Client Sample ID: RALEIGH HOTEL WELL 2 (420-30027-2)

Radiochemistry

Lab Sample ID Work Order: Matrix:	: F911802 LK321 WATER	26-002			Date Collec Date Receiv		09/17/09 09/18/09		=
			Count Uncert.	Total Uncert,			:	Prep	Analysis
Parameter	Result	Qual		(2 ₀ +/-)	RL	MDC	1	Date	Date
Radium 226 by E	PA 903.0	MOD		pq	Ci/L	Ba	tch # 9261	464	Yld % 102
Radium (226)	0.25	J		0.14	1.00	0.17	(09/18/09	10/05/09
Radium 228 by GB	PC EPA 90	4 MOD		pí	Ci/L	Ba	tch # 9261	465	¥ld % 99
Radium 228	0.43	J		0.24	1.00	0.34	(09/18/09	10/05/09
Total Uranium by	KPA ASTM	5174-91		uç	g/L	Ba	tch # 9272	2109	Yld %
Total Uranium	5.09			0.53	1.00	0.31	(09/29/09	10/03/09
Gross Alpha/Beta	EPA 900			p	Ci/L	Ba	tch # 9268	3444	Yld %
Gross Alpha	5.5			1.7	3.0	1.7	(09/25/09	09/29/09
Gross Beta	4.6			1.4	4.0	1.9		09/25/09	09/29/09

NOTE (S)

Data are incomplete without the case narrative.

MDC is determined by instrument performance only. Bold results are greater than the MDC

J Result is greater than sample detection limit but less than stated reporting limit.

Client Sample ID: RALEIGH HOTEL WELL 3 (420-30027-3)

Radiochemistry

Lab Sample I Work Order: Matrix:	D: F9I180 LK323 WATER	226-003			Date Colled Date Receiv		/17/09 094! /18/09 0800	
Deventer	D 1		Count Uncert.	Total Uncert. (2 g+/-)			Prep Date	Analysis Date
Parameter	Result	Qual		(4 017 -)	RL	MDC		5466
Radium 226 by	EPA 903.0	MOD		P	Ci/L	Batch	# 9261464	Yld % 103
Radium (226)	0.10	U		0.14	1.00	0.23	09/18/09	10/05/09
Radium 228 by (GFPC EPA 9	4 MOD		p	Ci/L	Batch	# 9261465	¥ld % 97
Radium 228	0.03	U		0.20	1.00	0.35	09/18/09	10/05/09
Total Uranium h	oy KPA ASTI	4 5174-91		u	g/L	Batch	# 9272109	Yld %
Total Uranium	5,72			0.60	1.00	0.31	09/29/09	10/03/09
Gross Alpha/Bet	ta EPA 900			p	Ci/L	Batch	# 9268444	Yld %
Gross Alpha	5,1			1.5	3.0	1.1	09/25/09	09/29/09
Gross Beta	2.0	J		1.1	4.0	1.7		09/29/09

NOTE (S)

Data are incomplete without the case narrative.

MDC is determined by instrument performance only.

Bold results are greater than the MDC

J Result is greater than sample detection limit but less than stated reporting limit.

Client Sample ID: RALEIGH HOTEL WELL 4 (420-30027-4)

Radiochemistry

Lab Sample I Work Order: Matrix:	D: F9I180 LK326 WATER	LK326			Date Collec Date Receiv		09/17/09 09/18/09	
			Count Uncert,	Total Uncert.			_	
Parameter	Result	Qual		(2 o+/-)	RL	MDC	Prep Date	1
Radium 226 by	EPA 903.0	MOD		p	Ci/L	Bat	ch # 926146	4 Yld % 104
Radium (226)	0.15	υ		0.13	1.00	0.18	09/3	18/09 10/05/09
Radium 228 by G	FPC EPA 90	4 MOD		pq	Ci/L	Bat	ch # 926146	5 Yld % 98
Radium 228	-0.07	U		0.19	1,00	0.35	09/:	18/09 10/05/09
Total Uranium k	y KPA ASTA	4 5174-91		uç	g/L	Bat	ch # 927210	9 Yld %
Total Uranium	3.65			0.39	1.00	0.31	09/:	29/09 10/03/09
Gross Alpha/Bet	a EPA 900			pq	Ci/L	Bat	ch # 926844	4 Yld %
Gross Alpha	2.7	J		1.2	3.0	1.3	09/:	25/09 09/29/09
Gross Beta	3.4	J		1.3	4.0	1.9	00/	25/09 09/29/09

NOTE (S)

Data are incomplete without the case narrative.

MDC is determined by instrument performance only. Bold results are greater than the MDC

 \mathcal{I} Result is greater than sample detection limit but less than stated reporting limit.

Client Sample ID: RALEIGH HOTEL WELL 4A (420-30027-5)

Radiochemistry

Lab Sample I Work Order: Matrix:	D: F9I180 LK328 WATER	226-005			Date Colled Date Receiv		09/17/09 1100 09/18/09 0800	
			Count Uncert.	Total Uncert.			Prep	Analysis
Parameter	Result	Qual		(2 σ+/-)	RL	MDC	Date	Date
Radium 226 by	EPA 903.0	MOD		p	Ci/L	Bato	ch # 9261464	Yld % 101
Radium (226)	0,39	J		0.21	1.00	0,27	09/18/09	10/05/09
Radium 228 by	GFPC EPA 9	4 MOD		p	Ci/L	Bato	sh # 9261465	Yld % 96
Radium 228	0.15	U		0.30	1.00	0.50	09/18/09	10/05/09
Total Uranium :	by KPA ASTN	4 5174-91		u	g/L	Bato	ch # 927210 9	Yld %
Total Uranium	2.46			0.31	2.00	0.62	09/29/09	10/03/09
Gross Alpha/Be	ta EPA 900			p	Ci/L	Bato	ch # 9268444	Yld %
Gross Alpha	1.6	J		1.0	3.0	1.4	09/25/09	09/29/09
Gross Beta	2.5	J		1.1	4.0	1.6	09/25/09	09/29/09

NOTE (S)

Data are incomplete without the case narrative.

MDC is determined by instrument performance only.

Bold results are greater than the MDC

J Result is greater than sample detection limit but less than stated reporting limit.

Client Sample ID: 2-WS

Radiochemistry

Lab Sample ID Work Order: Matrix:	: F9I1802 LK38J WATER	49-005				Collected: Received;	09/17/09 09/18/09		
D	De cui la		Count Uncert.	Total Uncert. (2 g+/-)				Prep Date	Analysis Date
Parameter	Result	Qual		(2017)	RL	MDC			
Gross Alpha/Beta	a EPA 900			P	Ci/L	Ba	tch # 9268	8444	Yld %
Gross Alpha	0.9	U	1.2	1.2	3.	2.1	I	09/25/09	09/29/09
Gross Beta	9.2		1.4	1.6	4.	0 1.7		09/25/09	09/29/09

NOTE (S)

Data are incomplete without the case narrative.

MDC is determined by instrument performance only. Bold results are greater than the MDC

Client Sample ID: 2-WS DUP

Radiochemistry

Lab Sample ID: Work Order: Matrix:	F9I1802 LK38J WATER	49-005X			Date Colle Date Recei		09/17/09 12 09/18/09 08	00 00
			Count Uncert,	Total Uncert.			Prep	Analysis
Parameter	Result	Qual		(2 o+ /-)	RL	MDC	Date	Date
Gross Alpha/Beta	EPA 900			p	Ci/L	Bat	⊐h # 9268444	Yld %
Gross Alpha	0.8	U	1.8	1.8	3.0	3.2	09/25/	09 09/29/09
Gross Beta	8.2		1.5	1.6	4.0	1.8	09/25/	09 09/29/09

NOTE (S)

Data are incomplete without the case narrative.

MDC is determined by instrument performance only. Bold results are greater than the MDC

METHOD BLANK REPORT

Radiochemistry

Client Lot ID: F9I180226 Matrix: WATER

			Count Uncert,	Total Uncert.				Prep	Lab Sample ID Analysis
Parameter	Result	Qual		(2 σ+/-)	RL	MDC		Date	Date
Radium 226 by	EPA 903.0 MC	D		pCi/L	Batch #	9261464	Yld %	106 F	9I180000-464B
Radium (226)	0.046	U		0.090	1.00	0.16		09/18/09	10/05/09
Radium 228 by	GFPC EPA 904	MOD		pCi/L	Batch #	9261465	Yld %	97 F	9I180000-465B
Radium 228	0.14	U		0.23	1.00	0.39		09/18/09	10/05/09
Gross Alpha/B	eta EPA 900			pCi/L	Batch #	9268444	Yld %	F	9I250000-444B
Gross Alpha	0.25	U	0,42	0.42	2.00	0.72		09/25/09	09/29/09
Gross Beta	0.25	υ	0.97	0.98	4.00	1.6		09/25/09	09/29/09
Total Uranium	by KPA ASTM 5	5174-91		mg/L	Batch #	9272109	Yld %	F	9I290000-109B
Total Uranium	0.000279	U		0.000037	0.00100	0.0003	L	09/29/09	10/03/09

NOTE (S)

Data are incomplete without the case narrative.

MDC is determined using instrument performance only Bold results are greater than the MDC

Laboratory Control Sample Report

Radiochemistry

Client Lot ID: F9I180226 Matrix: WATER

			Count Total Uncert. Uncert. Result (2 g+/-) MDC			Lab Sample ID		
Parameter	Spike Amount	Result			MDC	% Yld % Rec	QC Control Limits	
Gross Alpha/Beta EP	A 900		pCi/L	900.0) MOD	F912	50000-444C	
Gross Alpha	49.4	45.7	3.6	5,1	1.1	92	(80 - 140)	
	Batch #:	9268444			Analysis Date:	09/29/09		
Gross Alpha/Beta EPA	A 900		pCi/L	900.0) MOD	F912	50000-444C	
Gross Beta	68.7	62.9	2.8	5.4	1.6	92	(77 ~ 123)	
	Batch #:	9268444			Analysis Date:	09/29/09		
Total Uranium by KP	A ASTM 5174-91		mg/L	5174-	-91	F912	90000-109C	
Total Uranium	0.0400	0.0426		0.0052	0.0003	106	(90 - 118)	
	Batch #:	9272109			Analysis Date:	10/03/09		
Total Uranium by KP	A ASTM 5174-91	-	mg/L	5174-	·91	F912	90000-109C	
Total Uranium	0.00800	0.00883		0.00092	0.00031	110	(90 - 118)	
	Batch #:	9272109			Analysis Date:	10/03/09		

MATRIX SPIKE/MATRIX SPIKE DUPLICATE REPORT

						-				
Client Lot II Matrix:		F91170132 WATER					e Sampled: Received:	09/1 09/1		1021 0830
						Duct	Mederved.	0971	1709	0030
				Total			Total		QC Samp	le ID
Parameter		Spike Amount	SPIKE Result	Uncert. (2 ₀ +/-)	Spike Yld	SAMPLE Result	Uncert. (2 g +/-)	% Yld	*Rec	QC Control Limits
Total Uranium	by KP.	A ASTM 5		mg/L	E	174-91		म	911701	32-001
Total Uranium		0.0400	0.149	0.018		0.108	0.013		101	(57 - 150)
	Spk2	0.0400	0.152	0.018		0.108	0.013		108	(57 - 150)
							Preci	sion:	2	%RPD
		Batch #	: 9272109	An	alysis da	ate: 1	0/03/09			

Radiochemistry

NOTE (S)

Data are incomplete without the case narrative.

Calculations are performed before rounding to avoid round-off error in calculated results

MATRIX SPIKE REPORT

Radiochemistry

Client Lot Id:	F9I180249	Date Sampled:	09/17/09
Matrix:	WATER	Date Received:	09/18/09

			Total			Total		QC Sample) ID
Parameter	Spike Amount	Spike Result	Uncert. (2g+/-)	Spike Xld.	Sample Result	Uncert. (2 g +/-)	%YLD	%REC	QC Control Limits
Gross Alpha/Beta EP	A 900	· · · ·	pCi/L	90	0.0 MOD		F	91180249	-005
Gross Beta	68.7	78.9	6.7		9.2	1.6		101	(71 - 146)
	Batch #:	9268444	An	alysis E	ate:	09/29/09			
Gross Alpha/Beta EPA	A 900		pCi/L	90	0.0 MOD		F	91180249	-005
Gross Alpha	49.4	37.0	5.8		0.9	1.2		73	(33 - 150)
	Batch #:	9268444	An	alysis E	ate:	09/29/09			

NOTE (S)

i.

Data are incomplete without the case narrative.

Calculations are performed before rounding to avoid round-off errors in calculated results.

Laboratory Control Sample/LCS Duplicate Report

Radiochemistry

Client Lot	ID:	F9I180226
Matrix:		WATER

						Total			Lab Sample ID			
		Spike Amount	Result		Uncert. (2 σ+/-) % Yld		% Rec	QC Control Limits	Preci	sion		
Radium 226	by	EPA	903.0 MOD	· · · ·	pCi/L	903.0	0 MOD		F911	B0000-	464C	
Radium (226)	S	pk 2	11.3 11.3	12.0 12.5		1.2 1.2	106 104	107 111	(45 - 150) (45 - 150)	4	%RPD	
			Batch #:	9261464			Analysi	s Date:	10/05/09			
Radium 228	by (GFPC	EPA 904 MOD		pCi/L	904 1	MOD		F9I1:	80000-	465C	
Radium 228	S	pk 2	6.73 6.73	5.58 6.22		0.70 0.75	96 97	83 93	(64 - 150) (64 - 150)	11	%RPD	
			Batch #:	9261465			Analysi	s Date:	10/05/09			

NOTE (S)

Calculations are performed before rounding to avoid round-off error in calculated results

DUPLICATE EVALUATION REPORT

Radiochemistry

Client Lot ID:	F9I180226	Date	Sampled:	09/17/09
Matrix:	WATER	Date	Received:	09/18/09

Parameter	SAMP: Resu		Total Uncert. (2 g +/-)	% Yld	DUPLICA Result	TE	Total Uncert. (2 g+/-)	% Yld	QC Sample ID Precis	
Gross Alpha/Beta EPA	. 900			pCi/L	900.	0 MOD		FS	JI180249-0	05
Gross Alpha	0.9	U	1.2		0.8	υ	1.8		6	%RPD
Gross Beta	9,2		1.6		8.2		1.6		12	%RPD
		Batch #:	9268444	(Sample)	9268	444 (D	uplicate)			

NOTE (S)

Data are incomplete without the case narrative. Calculations are performed before rounding to avoid round-off error in calculated results

EnviroTest Laboratories, Inc.												
315 Fuilerton Avenue			ç	ain of	Custor	Chain of Custody Record	Ld				Invirol	Envirolest
Newburgh, NY 12550 Phome (845) 562-1890 Eax (845) 562-0841			5				5				abora	Laboratories Inc.
	Sampler:			Lab PM			0	Carrier Tracking No(s)	(s)aN t	COC No:	;0 0	
ormation (Sub Contract Lab)				Rohl, I	Rohl, Debra R					4204	122.1	
Client Contact Shipping/Receiving	Phone:			E-Mail: dbayei	@envirotestla	E-Mail: dbayer@envirotestlaboratories.com				Page 1 of 1	1 of 1	
Company. Transform Com-						Analu	Analvsis Reguested	lastad		15-027 197 -125	STL Job #: 420-30027-1	
nerica Analytical Lesung Corp.	Rue Date Decinente	ţ						-	-	「 「 に 」 「 」 」 「 」 」 「 」 「 」 」 「 」 」 」 」 」 」	Preservation Codes	. <u>.</u>
t5 Rider Trail North, ,	10/1/2009									A-HCL	T	M - Hexane
City: Earth City	TAT Requested (days):	ys):					<u>.</u>				B - NaOH C - Zn Acetate	N - None O - AsnaO2
State, ZD: MO REDME									<u>`````</u>	E - Natric Act		P - Na204S Q - Na2SO3
	PO#;				1) (* 4) 5 -							R - Na2S2SO3 S - H2SO4
					AЯ						PCI4	T - TSP Dodecanydrate U - Acatone
				12 3	'สอ/							V - MCAA W - nh 4-5
Project Name: Tim Miller Associates, Inc.	Project #: 42001187			287.9	ve o							Z - other (specify)
	SSOW#				06 /1 k) OS					other:		
				Matrix	SM/S					pec		
		Sample	Sample Type (C≐comp,	Manustri Sasolid, Camataroit, Bill	BCONT BCONT RCONT					winin 184		
Sample Identification Client ID (Lab ID)	Sample Date	Time	G=grab) er APreservativ	10.9	ns 🗄				時に時には		Special Ins	Special Instructions/Note:
027-13	9/17/09	10:30		Water							6	
							-	_	-			
Raleigh Hotel Well 2 (420-30027-2)	9/17/09	10:15		Water				_				
Raleigh Hotel Well 3 (420-30027-3)	6/11/09	9:45		Water	X					2		
Raleigh Hotel Weli 4 (420-30027-4)	60/21/6	11:30		Water								
Raleigh Hotel Well 4A (420-30027-5)	60/21/6	11:00		Water	×							
Possible Hazard Identification					Sample Dis	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	may be as	sessed if s	amples an	e retained Ion	nger than 1	month)
ile 🗌 Skin imitant 🛄	Poison B Unknown	ןנ	Radiological		Refun	Return To Client]	Disposal By Lab	de l	Archive For	ď	Months
[Deliverable Requested: I, II, IV, Other (specify)					Special Inst	Special Instructions/QC Requirements:	aquiremenu					
Empty Kit Relinquished by:		Date:			Time:			Method o	Method of Shipment			
Zerres	Date/Time:	Ŝ	<u>°</u>	Company .	Received by: $\delta - \delta$	D-1			Date/Time:		0 600	Company
	Date/Time:		<u>છ</u>	mpany	Received by	by: ¢			DataTime			Сопрапу
Reinquished by:	Date/Time:		<u>ರೆ</u>	Company	Received by:	byc			Date/Time:			Company
Custody Seals Intact: Custody Seal No.:			-		CoolerTea	Cooler Temperature(s) ^a C and Other Remarks:	nd Other Rem	erks;				
A Yes A No												

•

.

イ. デ とうし 、

TestAmerica	St.	Louis
-------------	-----	-------

TestAmerica	ot #(s): F9I180226
	230
THE LEADER IN ENVIRONMENTAL TESTING	231
CONDITION UPON RECEIPT FORM	
Client: Enviro Test	· · · · · · · · · · · · · · · · · · ·
Quote No: 76370	
COC/RFA No: <u>ste belan</u>	
Initiated By:6/	Date: $\frac{412}{1/10/0^4}$ Time: $\frac{2640}{100}$
	pping Information
Shipper: FedBx UPS DHL Courier (lient Other: Multiple Packages: Y N
Shipping # (s):* Musku	Sample Temperature (s):**
	1. Ambien 6.
2 7	2 7
3 8	3 8
4, 9	4 9
5 10	5, 10
*Numbered shipping lines correspond to Numbered Sample Temp lines Condition (Circle "Y" for yes, "N" for no and "N/A" for not applicable	**Sample must be received at $4^{\circ}C \pm 2^{\circ}C$- If not, note contents below. Temperature variance does NOT affect the following: Metals-Liquid or Rad tests- Liquid or Solids
1. Y Y Are there custody seals present on the cooler?	
2. Y N NA Do custody seals on cooler appear to tampered with?	9. I N N/A tampered with?
3. N Were contents of cooler frisked after opening, but before unpacking?	10. \hat{N} N/A Was sample received with proper pH'? (If not, make note below)
4. N Sample received with Chain of Custody?	11. Y N Sample received in proper containers?
5. N N/A Does the Chain of Custody match sample ID's on the container(s)?	12. Y N NA Headspace in VOA or TOX liquid samples? (If Yes, note sample ID's below)
6. Y (N) Was sample received broken?	13. Y N Was Internal COC/Workshare received?
7. (Ŷ N Is sample volume sufficient for analysis?	14. Y N NA Was pH taken by original TestAmerica lab?
For DOE-AL (Pantex, LANL, Sandia) sites, pH of ALL containers received Notes: 420 - 4122	
1 4/119.1	
(4111.1	
<u> </u>	
Corrective Action:	
Client Contact Name:	Informed by:
 Sample(s) processed "as is" Sample(s) on hold until: 	If released, notify:
Project Management Review:	Date: 09-22-09
THIS FORM MUST BE COMPLETED AT THE TIME THE INEMS AND THE INITIATOR, THEN THAT PERSON IS REQUIRED TO APPLY	E BEING CHECKED IN. IF ANY ITEM IS COMPLETED BY SOMEONE OTHER THAN HEIR INITIAL AND THE DATE NEXT TO THAT ITEM.
AD	AIN-0004, REVISED 10/21/08 \Slsvr01\QA\FORMS\ST-LOUIS\ADMIN\Admin004 rev11.de

:

 DATE
 September 21, 2009

 HRI PROJECT
 009-587

 HRI SERIES NO
 1285/09

 DATE REC'D.
 9/18/2009

 CUST. P.O.#
 Job# 420-30027-1

EnviroTest Laboratories Inc. - Newburgh Debra R. Rohl 315 Fullerton Avenue Newburgh, NY 12550

REPORT OF ANALYSIS

SAMPLE NO.	1285/09-1	
SAMPLE IDENT	IFICATION:	420-30027-1 - Raleigh Hotel Well 1 Project #42001187 - Tim Miller Associates, Inc. Sampled on 09/17/2009 @ 1030

PARAMETER	RESULT	DETECTION LIMIT	METHOD	ANALYSIS DATE	ANALYST
Radon (+-Precision*), pCi/l (T)	1330(+-40)	11	SM 7500-Rn B	9/18/2009 @ 1000	AN

*Variability of the radioactive decay process (counting error) at the 95% confidence level, 1.96 sigma. Certification ID's: CO/EPA CO00008; CT PH-0152; KY 90076; KS E-10265; NH 232809; NYELAP 11417; PADEP 68-00551; RI LAO00284; WI 998376610

By:

Robert Rostad Laboratory Manager

CODES: (T) = Total (D) = Dissolved (S) = Suspended (PD) = Potentially Dissolved <= Less Than

samples that were received in the laboratory.

Results reported herein relate only to discrete samples submitted by the client. Hazen

Research, Inc. does not warrant that the results are representative of anything other than the

(R) = Total Recoverable

Page 1 of 5

 DATE
 September 21, 2009

 HRI PROJECT
 009-587

 HRI SERIES NO
 1285/09

 DATE REC'D.
 9/18/2009

 CUST. P.O.#
 Job# 420-30027-1

EnviroTest Laboratories Inc. - Newburgh Debra R. Rohl 315 Fullerton Avenue Newburgh, NY 12550

REPORT OF ANALYSIS

SAMPLE NO. I285/09-2 SAMPLE IDENTIFICATION:	420-30027-2 - Raleigh Hoto Project #42001187 - Tim M Sampled on 09/17/2009 @	filler Associate	es, Inc.		
PARAMETER	RESULT	DETECTION LIMIT	METHOD	ANALYSIS DATE	ANALYST
Radon (+-Precision*), pCi/l (T)	1360(+-40)	11	SM 7500-Rn B	9/18/2009 @ 1002	AN

*Variability of the radioactive decay process (counting error) at the 95% confidence level, 1.96 sigma. Certification ID's: CO/EPA CO00008; CT PH-0152; KY 90076; KS E-10265; NH 232809; NYELAP 11417; PADEP 68-00551; RI LAO00284; WI 998376610

Results reported herein relate only to discrete samples submitted by the client. Hazen Research, Inc. does not warrant that the results are representative of anything other than the samples that were received in the laboratory.

By:

Robert Rostad Laboratory Manager

CODES: (T) = Total (D) = Dissolved (S) = Suspended (PD) = Potentially Dissolved <= Less Than

(R) = Total Recoverable

Page 2 of 5

 DATE
 September 21, 2009

 HRI PROJECT
 009-587

 HRI SERIES NO
 1285/09

 DATE REC'D.
 9/18/2009

 CUST. P.O.#
 Job# 420-30027-1

EnviroTest Laboratories Inc. - Newburgh Debra R. Rohl 315 Fullerton Avenue Newburgh, NY 12550

REPORT OF ANALYSIS

SAMPLE NO. I285/09-3					
	420-30027-3 - Raleigh Hot Project #42001187 - Tim M Sampled on 09/17/2009 @	liller Associates	s, Inc.		
PARAMETER	RESULT	DETECTION LIMIT	METHOD	ANALYSIS DATE	ANALYST
Radon (+-Precision*), pCi/l (T)	1960(+-50)	11	SM 7500-Rn B	9/18/2009 @ 1004	AN

*Variability of the radioactive decay process (counting error) at the 95% confidence level, 1.96 sigma. Certification ID's: CO/EPA CO00008; CT PH-0152; KY 90076; KS E-10265; NH 232809; NYELAP 11417; PADEP 68-00551; RI LAO00284; WI 998376610

Results reported herein relate only to discrete samples submitted by the client. Hazen Research, Inc. does not warrant that the results are representative of anything other than the samples that were received in the laboratory.

(T) = Total (D) = Dissolved (S) = Suspended (R) = Total Recoverable

(PD) = Potentially Dissolved < = Less Than

CODES:

By: AUS OCT

Robert Rostad Laboratory Manager

Page 3 of 5

An Employee-Owned Company

 DATE
 September 21, 2009

 HRI PROJECT
 009-587

 HRI SERIES NO
 1285/09

 DATE REC'D.
 9/18/2009

 CUST. P.O.#
 Job# 420-30027-1

EnviroTest Laboratories Inc. - Newburgh Debra R. Rohl 315 Fullerton Avenue Newburgh, NY 12550

REPORT OF ANALYSIS

SAMPLE NO. 1285/09-4					
SAMPLE IDENTIFICATION:	420-30027-4 - Raleigh Hot Project #42001187 - Tim M Sampled on 09/17/2009 @	filler Associate	es, Inc.		
PARAMETER	RESULT	DETECTION LIMIT	METHOD	ANALYSIS DATE	ANALYST
Radon (+-Precision*), pCi/l (T)	830(+-30)	12	SM 7500-Rn B	9/18/2009 @ 1006	AN

*Variability of the radioactive decay process (counting error) at the 95% confidence level, 1.96 sigma. Certification ID's: CO/EPA CO00008; CT PH-0152; KY 90076; KS E-10265; NH 232809; NYELAP 11417; PADEP 68-00551; RI LAO00284; WI 998376610

Results reported herein relate only to discrete samples submitted by the client. Hazen Research, Inc. does not warrant that the results are representative of anything other than the samples that were received in the laboratory.

By:

Robert Rostad Laboratory Manager

CODES: (T) = Total (D) = Dissolved (S) = Suspended ((PD) = Potentially Dissolved <= Less Than

(R) = Total Recoverable

Page 4 of 5

 DATE
 September 21, 2009

 HRI PROJECT
 009-587

 HRI SERIES NO
 1285/09

 DATE REC'D.
 9/18/2009

 CUST. P.O.#
 Job# 420-30027-1

EnviroTest Laboratories Inc. - Newburgh Debra R. Rohl 315 Fullerton Avenue Newburgh, NY 12550

REPORT OF ANALYSIS

SAMPLE NO. 1285/09-5					
P	20-30027-5 - Raleigh Hot roject #42001187 - Tim M ampled on 09/17/2009 @	liller Associate	es, Inc.		
PARAMETER	RESULT	DETECTION LIMIT	METHOD	ANALYSIS DATE	ANALYST
Radon (+-Precision*), pCi/l (T)	1650(+-40)	12	SM 7500-Rn B	9/18/2009 @ 1008	AN

*Variability of the radioactive decay process (counting error) at the 95% confidence level, 1.96 sigma. Certification ID's: CO/EPA CO00008; CT PH-0152; KY 90076; KS E-10265; NH 232809; NYELAP 11417; PADEP 68-00551; RI LAO00284; WI 998376610

Results reported herein relate only to discrete samples submitted by the client. Hazen Research, Inc. does not warrant that the results are representative of anything other than the samples that were received in the laboratory.

By:

Robert Rostad Laboratory Manager

CODES: (T) = Total (D) = Dissolved (S) = Suspended (R) = Total Recoverable (PD) = Potentially Dissolved <= Less Than

Page 5 of 5

REPORT: MICROSCOPIC PARTICULATE ANALYSIS

ENVIRONMENTAL ASSOCIATES LTD. 24 Oak Brook Drive, Ithaca, NY 14850

Temperature: 9E Turbidity: Turbidity: Water Type: well Turbidity: Turbidity: FILTER PROCESSING Color of water around filter: NA Total volume of sediment: 0.05 ml Filter color: NA Volume of sediment/100 gallons: 1.9 ml/100gal. Color of sediment: tan IFA equivalent liter volume examined: # gallons filtered: 2.642 Phase equivalent gallon volume examined: 2.642 ANALYSIS OF PARTICULATES: key = (EH) - extremely heavy [>20/field @ 100X] (H) - heavy [10-20/field @ 100X] (NF) - none found PARTICULATE DEBRIS Quantity Description PROTOZOANS Quantity Description Large part. 5 µm & larger M fine silt & sand Other Coccidia NE		(607) 272-8902 Fax	(607) 256-7092	FL NELAP-E87851
RECEIPT OF FILTER: Date Received: 9/18/2009 # of filters: NA Type: cubitainer Carrier: Fed Ex Priority COLLECTION: Collector: N/A Date collected: 9/17/2009	Filter ID: <u>35635</u>	Client: <u>EnviroTes</u>	st Laboratories Inc.	
Date Received: 9/18/2009 # of filters: NA Type: cubitainer Carrier: Fed Ex Priority COLLECTION:	Station/Body of water:	Raleigh Hotel Well #1 (420-30027-1)		
OULECTION: Collector: N/A Temperature: 9E Water Type: well Turbidity: Turbidity: Mate collected: 9/17/2009 Turbidity: Turbidity: Turbidity: State collected: 9/17/2009 Turbidity: State collected: 9/17/2009 Turbidity: Turbidity: State collected: 9/17/2009 Turbidity: State colspan="2">Turbidity: State colspan="2">Turbidity: Turbidity: State colspan="2">State colspan="2"	RECEIPT OF FILTER:			
Collector: N/A Date collected: $9/17/2009$ Temperature: e^{F} Turbidity: Image: Collected: $9/17/2009$ Water Type: well Turbidity: Image: Collected: $9/17/2009$ FILTER PROCESSING Color of water around filter: NA Total volume of sediment: 0.05 ml Filter color: NA Volume of sediment/100 gallons: 1.9 ml/100gal. Color of sediment: tan IFA equivalent liter volume examined: IFA equivalent liter volume examined: Color of sediment: tan IFA equivalent liter volume examined: Image:	Date Received: <u>9/18/200</u>	9 # of filters: <u>NA</u>	Type: <u>cubitainer</u>	Carrier: Fed Ex Priority
Temperature: 9E Turbidity: Water Type: well Turbidity: FILTER PROCESSING Color of water around filter: NA Total volume of sediment: 0.05 ml Filter color: NA Volume of sediment/100 gallons: 1.9 ml/100gal. Color of sediment: tan IFA equivalent liter volume examined: # gallons filtered: 2.642 Phase equivalent gallon volume examined: 2.642 ANALYSIS OF PARTICULATES: key = (EH) - extremely heavy [>20/field @ 100X] (H) - heavy [10-20/field @ 100X] (NF) - none found PARTICULATE DEBRIS Quantity Description PROTOZOANS Quantity Description Large part. 5 µm & larger M fine silt & sand Other Coccidia NE NE	COLLECTION:			
Color of water around filter: NA Total volume of sediment: 0.05 ml Filter color: NA Volume of sediment/100 gallons: 1.9 ml/100gal. Color of sediment: tan IFA equivalent liter volume examined: $$ # gallons filtered: 2.642 Phase equivalent gallon volume examined: $$ ANALYSIS OF PARTICULATES: key = (EH) - extremely heavy [>20/field @ 100X] (H) - heavy [10-20/field @ 100X] 2.642 ANALYSIS OF PARTICULATES: key = (EH) - extremely heavy [>20/field @ 100X] (H) - heavy [10-20/field @ 100X] 2.642 PARTICULATE DEBRIS Quantity Description PROTOZOANS Quantity Description Large part. 5 μ m & larger Mine sitt & sand Other Coccidia NE NE NE	Temperature: <u>°F</u>			
Filter color: NA Volume of sediment/100 gallons: 1.9 ml/100gal. Color of sediment: tan IFA equivalent liter volume examined: # gallons filtered: 2.642 Phase equivalent gallon volume examined: ANALYSIS OF PARTICULATES: key = (EH) - extremely heavy [>20/field @ 100X] (H) - heavy [10-20/field @ 100X] 00X] (M) -moderate [4-9/field @ 100X] (R) - rare [<1-3/field @ 100X]	FILTER PROCESSING			
PARTICULATE DEBRIS Quantity Description Quantity Description Large part. 5 μm & larger M fine silt & sand Other Coccidia NE	Filter color: Color of sediment: # gallons filtered: ANALYSIS OF PARTICU key = (EH) - extremely	NA tan 2.642 LATES: heavy [>20/field @ 100X] (H) -	Volume of sediment/100 gallons: IFA equivalent liter volume exam Phase equivalent gallon volume heavy [10-20/field @ 100X]	<u>1.9 ml/100gal.</u> nined: <u></u> examined: <u>2.642</u>
Large part. 5 μ m & larger \underline{M} fine silt & sand \underline{NF} Other Coccidia \underline{NF}			PROTOZOANS	
Small part. up to 5 µm EH Interamorphous debris Other protozoans NF Plant debris NF	Large part. 5 μ m & larger Small part. up to 5 μ m	<u>M</u> fine silt & sand EH fine amorphous debris		
OTHER ORGANISMS NE ALGAE Nematodes NE Green Algae NE	Nematodes			
Nematode eggs NF	Rotifers Crustaceans	<u>NF</u>	DiatomsNF	
Crustacean eggs NF Blue-Green Algae NF Insects NF	Insects	_NF	Blue-Green Algae <u>NF</u>	
Other Flagellated AlgaeNF	Other			

COMMENTS:

No biological materials were observed. Based upon microscopic particulate analysis and the proposed EPA risk factors associated with bio-indicators there is a low risk of surface contamination (EPA risk factors= 0 low risk).

Sample was collected and processed using the NYSDOH Modified Microscopic Particulate Analysis method.

Environmental Associates Ltd. certifies that all quality control elements, as required by NELAP, associated with the above data have been met. Results relate only to the sample.

REPORT REVIEWED BY:

Juscin T. Bartios DATE: November 3, 2009

E.A.- Rev. April.3, 2006

Page 1 of 2

N ACCOR

REFERENCE: Consensus Method for Determining Groundwaters Under the Direct Influence of Surface Water Using Microscopic Particulate Lunzees Analysis (MPA) USEPA Manchester Environmental Laboratory, EPA 910/9-92-029, October 1992. Environmental Associates Ltd. certifies that all quality control elements, as required by NELAP, associated with the above data have been met. Results relate only to the sample. REPORT REVIEWED BY: Matchester Influence of Surface Water Using Microscopic Particulate Interviewed BY: Matchester Environmental Laboratory, EPA 910/9-92-029, October 1992. Interviewed BY: Matchester Environmental Laboratory, EPA 910/9-92-029, October 1992. Interviewed BY: Matchester Environmental Laboratory, EPA 910/9-92-029, October 1992. Interviewed BY: Matchester Environmental Associates, Ltd.	COMMENTS: No biological materials were observed. Based upon microscopic particulate analysis and the proposed EPA risk factors factors associated with bio-indicators there is a low risk of surface contamination (EPA risk factors= 0 low risk). Sample was collected and processed using the NYSDOH Modified Microscopic Particulate Analysis method.	Non-processing Communication Photosynthetic flagellates 0 Other: 0 0 NF		Secondary Particulates EPA Relative Risk = 0 Low Risk	ebris (with chloro.) 0 NF	Insects/larvae 0 NF 0	gae 0 NF	Coccidia (confirmed)0NF0Diatoms0NF0	Primary Particulates #/100 gallon Relative Frequency Relative Risk Factor Comr	Date: 9/17/2009	PWS ID# Well ID# Utility Name EAL Sample ID: Raleigh Hotel Well #1 (420-30027 EnviroTest Laboratories Inc. 35635
roscopic Particulate Lo72682 re above data have been met. Results Environmental Associates, Ltd.	s and the proposed EPA risk PA risk factors= 0 low risk). ticulate Analysis method.			lisk					or Comments	FL NELAP-E87851	Page 2 of 2

REPORT: MICROSCOPIC PARTICULATE ANALYSIS

ENVIRONMENTAL ASSOCIATES LTD. 24 Oak Brook Drive. Ithaca. NY 14850

	(607) 272-8902 Fax	(607) 256-7092	FL NELAP-E87851
Filter ID: <u>35637</u>	Client: <u>EnviroTe</u>	st Laboratories Inc.	
Station/Body of water:	Raleigh Hotel Well #2 (420-30027-2)		
RECEIPT OF FILTER:			
Date Received: 9/18/2009	9 # of filters: <u>NA</u>	Type: <u>cubitainer</u>	Carrier: Fed Ex Priority
COLLECTION:			
		Turbidity:	/17/2009
FILTER PROCESSING			
Color of water around filter Filter color: Color of sediment: # gallons filtered: ANALYSIS OF PARTICUE key = (FH) - extremely b	NA tan 0.26 LATES:	Total volume of sediment: Volume of sediment/100 gallor IFA equivalent liter volume exa Phase equivalent gallon volum heavy [10-20/field @ 100X]	amined:
(M) -moderate [4	-9/field @ 100X] (R) - rare [<		one found
PARTICULATE DEBRIS Large part. 5 μ m & larger Small part. up to 5 μ m Plant debris	Quantity Description _EHfine_silt & sand	PROTOZOANS Quar Other Coccidia NF Other protozoans NF	
OTHER ORGANISMS Nematodes Nematode eggs	<u>_NF_</u>	ALGAE Green Algae <u>NF</u>	
Rotifers Crustaceans Crustacean eggs		DiatomsNE	_
Insects		Blue-Green Algae <u>NF</u>	
Other		Flagellated Algae <u>NF</u>	_

COMMENTS:

No biological materials were observed. Based upon microscopic particulate analysis and the proposed EPA risk factors associated with bio-indicators there is a low risk of surface contamination (EPA risk factors= 0 low risk).

Sample was collected and processed using the NYSDOH Modified Microscopic Particulate Analysis method.

Environmental Associates Ltd. certifies that all quality control elements, as required by NELAP, associated with the above data have been met. Results relate only to the sample.

REPORT REVIEWED BY:

Juscin T. Bartins DATE: November 4, 2009

Page 1 of 2

N ACCOR

PWS ID#	Well ID# Raleigh Hotel Well #2 (420-30027	(420-30027 EnviroTest Labora	ne EAL Sample ID: ratories Inc. 35637	
	EPA Relative	Surface Water Risk Factors	ctors	ACCRED DO 35 HILM 35
Date: 9/17/2009				FL NELAP-E87851
Primary Particulates	#/100 gallon	Relative Frequency Re	Relative Risk Factor	Comments
Coccidia (confirmed)	0	NE 0		
Diatoms	0	-		
Other Algae	0			
Insects/larvae	0			
Rotifers	0			
Plant Debris (with chloro.)	0	NF		
		EPA Relative Risk = 0	Low Risk	
Secondary Particulates				
Nematodes	0	N		
Crustaceans	0	Z		
Amoeba	0	Z		
Non-photo. flag. & ciliates	0	Z		
Photosynthetic flagellates	0	Z		
Other:	0	NE		
COMMENTS: No biological m factors associa Sample was co	No biological materials were observed. factors associated with bio-indicators the Sample was collected and processed u	No biological materials were observed. Based upon microscopic preators associated with bio-indicators there is a low risk of surface Sample was collected and processed using the NYSDOH Modified	c particulate analysis and the proposed EPA risk ce contamination (EPA risk factors= 0 low risk). ied Microscopic Particulate Analysis method.	the proposed EPA risk sk factors= 0 low risk). te Analysis method.
REFERENCE: <u>Consensus Method for Determining Groundwaters Under the Direct Influence of Surface Water Using Microscopic Particulate</u>	Determining Groundwate	rs Under the Direct Influence of S	urface Water Using Microscop	ic Particulate
<u>Analysis (MPA)</u> USEP. Environmental Associates Ltd. certifies	A Manchester Environme s that all quality contro	<u>MPA)</u> USEPA Manchester Environmental Laboratory, EPA 910/9-92-029, (Ltd. certifies that all quality control elements, as required by NELAP,	29, October 1992. AP, associated with the abov	LO72682 Dctober 1992. associated with the above data have been met. Results
relate only to the sample.				

REPORT REVIEWED BY: Juscu 7. Boutus DATE: November 4, 2009

Environmental Associates, Ltd.

REPORT: MICROSCOPIC PARTICULATE ANALYSIS

ENVIRONMENTAL ASSOCIATES LTD. 24 Oak Brook Drive Ithaca NV 14850

	(607) 272-8902 Fax	,		FL NELAP-E87851
Filter ID: <u>35638</u>	Client: <u>EnviroTe</u>	st Laboratories Inc.		
Station/Body of water:	Raleigh Hotel Well #4 (420-30027-4)			
RECEIPT OF FILTER:				
Date Received: 9/18/2009	# of filters: <u>NA</u>	Type: <u>cubitainer</u>	(Carrier: Fed Ex Priority
COLLECTION:				
Collector:N/ATemperature:°FWater Type:well		Date collected: Turbidity:	<u>9/17/2</u> 	2009
FILTER PROCESSING				
Color of water around filter Filter color: Color of sediment: # gallons filtered:	: NA NA tan 2.642	Total volume of sediment Volume of sediment/100 g IFA equivalent liter volum Phase equivalent gallon	gallons: ne examin	
ANALYSIS OF PARTICUL key = (EH) - extremely h (M) -moderate [4-	neavy [>20/field @ 100X] (H) -	heavy [10-20/field @ 100 1-3/field @ 100X] (N	X] F) - none	found
PARTICULATE DEBRIS	Quantity Description	PROTOZOANS	Quantity	Description
Large part. 5 μ m & larger Small part. up to 5 μ m Plant debris	_EHfine silt & sand _EHfine amorphous debris _NF	Other Coccidia	_NF	
OTHER ORGANISMS Nematodes	NF	ALGAE Green Algae	NF	
Nematode eggs Rotifers Crustaceans	NF	Diatoms	NF_	
Crustacean eggs Insects	NF	Blue-Green Algae	NF	
Other	NF	Flagellated Algae	NF	

COMMENTS:

No biological materials were observed. Based upon microscopic particulate analysis and the proposed EPA risk factors associated with bio-indicators there is a low risk of surface contamination (EPA risk factors= 0 low risk).

Sample was collected and processed using the NYSDOH Modified Microscopic Particulate Analysis method.

Environmental Associates Ltd. certifies that all quality control elements, as required by NELAP, associated with the above data have been met. Results relate only to the sample.

REPORT REVIEWED BY:

Juscin T. Bartins DATE: November 5, 2009

Page 1 of 2

N ACCORC

PWS ID#	Well ID# Raleigh Hotel Well #4 (420-30027	EnviroTe	tories Inc.	EAL Sample ID: Page 2 of 2 35638 SOUNACCORD
	EPA Relative	Surface Water Risk Factors	Factors	ACCREDITION 30
Date: 9/17/2009				FL NELAP-E87851
Primary Particulates	#/100 gallon	Relative Frequency	Relative Risk Factor	Comments
Coccidia (confirmed)	0	Z	0	
Diatoms	0	NE	0	
Other Algae	0	NE	0	
Insects/larvae	0	NE	0	
Rotifers	0	NE	0	
Plant Debris (with chloro.)	0	N	0	
		EPA Relative Risk =	: 0 Low Risk	×
Secondary Particulates				
Nematodes	0	Z		
Crustaceans	0	Z		
Amoeba	0	Z		
Non-photo. flag. & ciliates	0	Z		
Photosynthetic flagellates	0	NE		
Other:	0	NE		
COMMENTS: No biological m factors associat Sample was co	No biological materials were observed. factors associated with bio-indicators th Sample was collected and processed u	No biological materials were observed. Based upon microscopic predictors associated with bio-indicators there is a low risk of surface Sample was collected and processed using the NYSDOH Modified	copic particulate analysis a urface contamination (EP <i>A</i> odified Microscopic Partic	particulate analysis and the proposed EPA risk contamination (EPA risk factors= 0 low risk). d Microscopic Particulate Analysis method.
REFERENCE: Consensus Method for Determining Groundwaters Under the Direct Influence of Surface Water Using Microscopic Particulate	Determining Groundwate	rs Under the Direct Influence	of Surface Water Using Micros	copic Particulate
<u>Analysis (MPA)</u> USEP, Fnvironmental Associates Itd. certifies	A Manchester Environme s that all quality contro	<u>Analysis (MPA)</u> USEPA Manchester Environmental Laboratory, EPA 910/9-92-029, sociates 1 td. certifies that all quality control elements, as required by NFI AF	92-029, October 1992. NFI AP associated with the c	<u>MPA)</u> USEPA Manchester Environmental Laboratory, EPA 910/9-92-029, October 1992. Itd. certifies that all quality control elements, as required by NFI AP, associated with the above data have been met. Results
relate only to the sample.	ס נוומנ מוו קטמוונץ כטוונו ט	ו פופווופוונא, מא ובקמווכם שא	וועבראר, מאסטכומובט שונוו נווב מ	מחסאב מפנש וושאב הבבוו ווובני עבזמוני

REPORT REVIEWED BY: Juscu 7. Boutus DATE: November 5, 2009

Environmental Associates, Ltd.

REPORT: MICROSCOPIC PARTICULATE ANALYSIS

ENVIRONMENTAL ASSOCIATES LTD. 24 Oak Brook Drive, Ithaca, NY 14850 (607) 272-8902 Fax (607) 256-7092

Filter ID: <u>35636</u>		Client:	Envirotes	t Labs			
Station/Body of water:	Raleigh Hotel V	Vell #4A (42	20-30027-5	i)			
RECEIPT OF FILTER:							
Date Received: 9/18/2009	9	# of filter	s: <u>NA</u>	Type: <u>cubitainer</u>	(Carrier: <u>E</u>	ed Ex Priority
COLLECTION:							
Collector: <u>N/A</u> Temperature: <u>°F</u> Water Type: <u>well</u>				Date collected: Turbidity:	<u>9/17/2</u> 	2009	
FILTER PROCESSING							
Color of water around filter Filter color: Color of sediment: # gallons filtered:	NA			Total volume of sedimen Volume of sediment/100 IFA equivalent liter volum Phase equivalent gallor	gallons: me examin		0.02 ml 6.1 ml/100gal. 0.33
key = (EH) - extremely (M) -moderate [4 PARTICULATE DEBRIS	-9/field @ 100X]	(F	- (H) - rare [<	heavy [10-20/field @ 100 1-3/field @ 100X] (I PROTOZOANS	NF) - none		
	-	cription ilt & sand		Other Coccidia	Quantity NF	Descrip	tion
Large part. 5 μ m & larger Small part. up to 5 μ m Plant debris		morphous (debris		<u>NF</u>		
OTHER ORGANISMS Nematodes				ALGAE Green Algae	NF		
Nematode eggs Rotifers Crustaceans	<u>_NF</u> NF			Diatoms	_NF_		
Crustacean eggs Insects	NF			Blue-Green Algae	NF		
Other	NF			Flagellated Algae	_NF_		

COMMENTS:

No biological materials were observed. Based upon microscopic particulate analysis and the proposed EPA risk factors associated with bio-indicators there is a low risk of surface contamination (EPA risk factors= 0 low risk).

Sample was collected and processed using the NYSDOH Modified Microscopic Particulate Analysis method.

Environmental Associates Ltd. certifies that all quality control elements, as required by NELAP, associated with the above data have been met. Results relate only to the sample.

REPORT REVIEWED BY:

Jusan R. Bartros DATE: November 3, 2009

REFERENCE: Consensus Method for Determining Groundwaters Under the Direct Influence of Surface Water Using Microscopic Particulate Analysis (MPA) USEPA Manchester Environmental Laboratory, EPA 910/9-92-029, October 1992. Environmental Associates Ltd. certifies that all quality control elements, as required by NELAP, associated with the above data have relate only to the sample. Report Reviewed By: Image: Consensus Method for Determining Groundwaters Date: November 3, 2009 Environmental	COMMENTS: No biological materials were observed. factors associated with bio-indicators th Sample was collected and processed u	Photosynthetic flagellates Other:	Amoeba Non-photo. flag. & ciliates	Crustaceans	Secondary Particulates		Plant Debris (with chloro.)	Rotifers	Insects/larvae	Other Algae	Coccidia (confirmed)	Primary Particulates #/10	Date: 9/17/2009	EPA	PWS ID# Raleigh
g <u>Groundwate</u> ter Environme luality contro Ductur	vere observ bio-indicator nd processe	00	00	00			0	0	0 0			#/100 gallon		Relative	Well ID# Raleigh Hotel Well #4A
ntal Laboratory, EPA 910/9-92-029 ental Laboratory, EPA 910/9-92-029 elements, as required by NELAI of DATE: November	No biological materials were observed. Based upon microscopic factors associated with bio-indicators there is a low risk of surface Sample was collected and processed using the NYSDOH Modifie	ZZ	ZZ	ZZ	-	EPA Relative Risk =	ZĦ	N	Z	ZZ	Z Z T TI	Relative Frequency		EPA Relative Surface Water Risk Fac	(420 En
of Surface Water Using Micros 2-029, October 1992. NELAP, associated with the a ber 3, 2009	No biological materials were observed. Based upon microscopic particulate analysis and the proposed EPA ris factors associated with bio-indicators there is a low risk of surface contamination (EPA risk factors= 0 low risk) Sample was collected and processed using the NYSDOH Modified Microscopic Particulate Analysis method.				-	0 Low Risk	0	0 0	0 (Relative Risk Factor		Factors	abs
Consensus Method for Determining Groundwaters Under the Direct Influence of Surface Water Using Microscopic Particulate Lange Consensus Method for Determining Groundwaters Under the Direct Influence of Surface Water Using Microscopic Particulate Lange Consensus Method for Determining Groundwaters Under the Direct Influence of Surface Water Using Microscopic Particulate Lange Consensus Method for Determining Groundwaters Under the Direct Influence of Surface Water Using Microscopic Particulate Lange Consensus Method for Determining Groundwaters Under Surface Water Using Microscopic Particulate Lange Consense Co	particulate analysis and the proposed EPA risk contamination (EPA risk factors= 0 low risk). d Microscopic Particulate Analysis method.					ж —						Comments	AP-E8785		EAL Sample ID: 35636