Appendix K

Supplemental Hydrogeology Investigation and Hydrogeology Investigation Addendum

d/b/a GeoDesign, Inc. P.C.

December 18, 2008 File No. 3052-01.2

Mr. William Balter Wilder Balter Partners 570 Taxter Road Elmsford, NY 10523

Via E-mail <u>BBalter@WilderBalter.com</u>

Re: Supplemental Hydrogeology Investigation North Salem Property North Salem, New York

Dear Bill:

This letter report provides results of supplemental hydrogeology investigations made at the subject site in November, 2008. These investigations were undertaken to provide supplementary data to further document the soils and bedrock hydrogeologic characteristics in the area of the proposed Subsurface Treatment and Disposal System. This new information is intended to supplement the findings included in Appendix J of the DEIS, which includes our February 5, 2007 Hydrogeology Investigation Report, and our September 20, 2007 Addendum report.

Purpose: Supplemental investigations were performed in the area of the SSTS to provide additional data to support aquifer thickness and hydraulic conductivity to that presented in the referenced previous reports. Specifically, the nature of the bedrock underlying the site had not been characterized previously since no rock coring had been performed at the site, instead its general characteristics had been estimated based on published geologic data and our knowledge of the area. Additional, testing of the overburden was also performed to supplement the previous findings. This testing included additional gradation testing and new laboratory testing of reconstituted samples to measure hydraulic conductivity and compare the resulting value to Kozeny-Carman correlations.

Field Testing: Six new test pits were excavated on November 7, 2008 with a larger excavator than was previously used in an attempt to reach bedrock and excavate below the groundwater level. These are termed TP-100 to TP-105. Logs are attached and locations are shown on Figure A also attached. The locations of these test pits were estimated by line of sight and pacing from existing site features but were not surveyed and are therefore approximate. All these the test pits reached weathered bedrock at depths varying from approximately 5 feet to 10 feet, and localized sound zones of bedrock at highly variable depths of approximately 6 to 12 feet. No groundwater was encountered to the excavator refusal depth (approximately 7 to 13 feet) in any of the test pits, indicating that groundwater levels are below the overburden (within the bedrock). Photographs of selected test pits and nearby bedrock are attached. These photographs depict the weathered nature of some of the bedrock as well as the discontinuities in the bedrock. Both of these characteristics provide zones and a mechanism for the site aquifer to extend into the upper portion of the bedrock.

One new test boring, B-100, was excavated on November 12, 2008 to allow coring and testing of the bedrock. The boring log is attached and its location is shown on Figure A. The location of Boring B-100

GeoDesign, Inc. · 984 Southford Road · Middlebury, CT 06762 · Tel 203-758-8836 · Fax 203-758-8842

December 18, 2008 File No. 3052-01.2 Page No. 2

was estimated by line of sight and pacing from existing site features but was not surveyed and is therefore approximate. Three packer tests were made in Boring B-100 in an attempt to quantify the hydraulic conductivity of the bedrock. Highly weathered and fractured bedrock was encountered at a depth of 17 feet and sound bedrock was reached at a depth of 22 feet, as indicated by rock quality in the rock cores. Rock quality was determined by the Rock Quality Designation (RQD). The RQD was 25% above a depth of 22 feet and 94% below a depth of 22 feet to the maximum depth cored (29 feet). Attempts were made to perform packer tests in the bedrock as follows:

Test #1 - 21' to 23' deep; Unable to hold seal (lost water pressure at 70 psi) Test #2 - 22' to 24' deep; Unable to hold seal (lost water pressure at 70 psi) Test #3 - 23' to 25' deep; 20 psi no measurable flow, 40 psi no measurable flow

These results correlate well with the rock coring data (RQD) indicating highly fractured (pervious) bedrock above a depth of approximately 23 feet and low permeability bedrock below a depth of 23 feet in Boring B-100. Although the lost pressure or the lack of measurable flow within the bedrock during Test #3 precludes quantifying the hydraulic conductivity of the bedrock, we infer that below approximately 23 feet the bedrock is relatively impervious and above approximately 23 feet the bedrock is highly pervious.

In Boring B-100, the thickness of the upper pervious/weathered/fractured bedrock zone is inferred to be approximately 5to 6 feet ([22' or 23'] minus [17']) based on drilling/coring. When comparing the packer tests and RQD results in Boring B-100 to the highest observed bedrock level in nearby Test Pit TP-100, the thickness of this zone is estimated to be approximately 14 feet ([23'] minus [9']). Thus, these data support the assumed approximate 10-foot thickness of pervious bedrock (used in our groundwater model).

Lastly, we measured depth to groundwater in six of the existing wells in 11/12/08. This data has been added to Table 5-1. We also measured depth to water in the newly installed well (B-100), this data is included on the log of Boring B-100. Groundwater levels are consistent with previous data.

Laboratory Testing: We had intended to estimate the hydraulic conductivity of the unconsolidated materials in selected test pits, but were unable to due to the absence of groundwater above the bedrock surface. Instead, we substituted the following testing and calculations to provide additional estimates of the hydraulic conductivity of the unconsolidated materials:

- 1. We selected three soil samples from B-100 and TP-100 for gradation testing. We then estimated the D_{10} size (sieve size of material which has 10% percent finer), the relative density (using SPT "N-values") and correlated these data to the hydraulic conductivity using Kozeny-Carman analyses. The gradation data is attached and updated Table 5-2 (also attached) presents the resulting calculated estimated hydraulic conductivities (coefficients of permeability). On this Table, we have segregated the hydraulic conductivities of the soils in the Upland site area from those of the Sub Surface Treatment System (SSTS) site area. In the latter area, the average estimated hydraulic conductivities range from about 3.7 to 5.3 feet/day with the average of six samples of 2.3 feet/day.
- 2. We reconstituted a composite soil sample from material obtained in TP-100 from depth of 3 to 10 feet to its estimated in-situ density (50% based on SPT "N-value see attached calculations) and performed a Constant Head permeability test (ASTM D 2434) in the laboratory. Test results, attached, indicate an estimated hydraulic conductivity of 1.3 x 10-3 cm/sec or 4.5 ft/day in the laboratory.

GeoDesign, Inc. · 984 Southford Road · Middlebury, CT 06762 · Tel 203-758-8836 · Fax 203-758-8842

These values provide supporting data for the values of hydraulic conductivity which we used in the groundwater model.

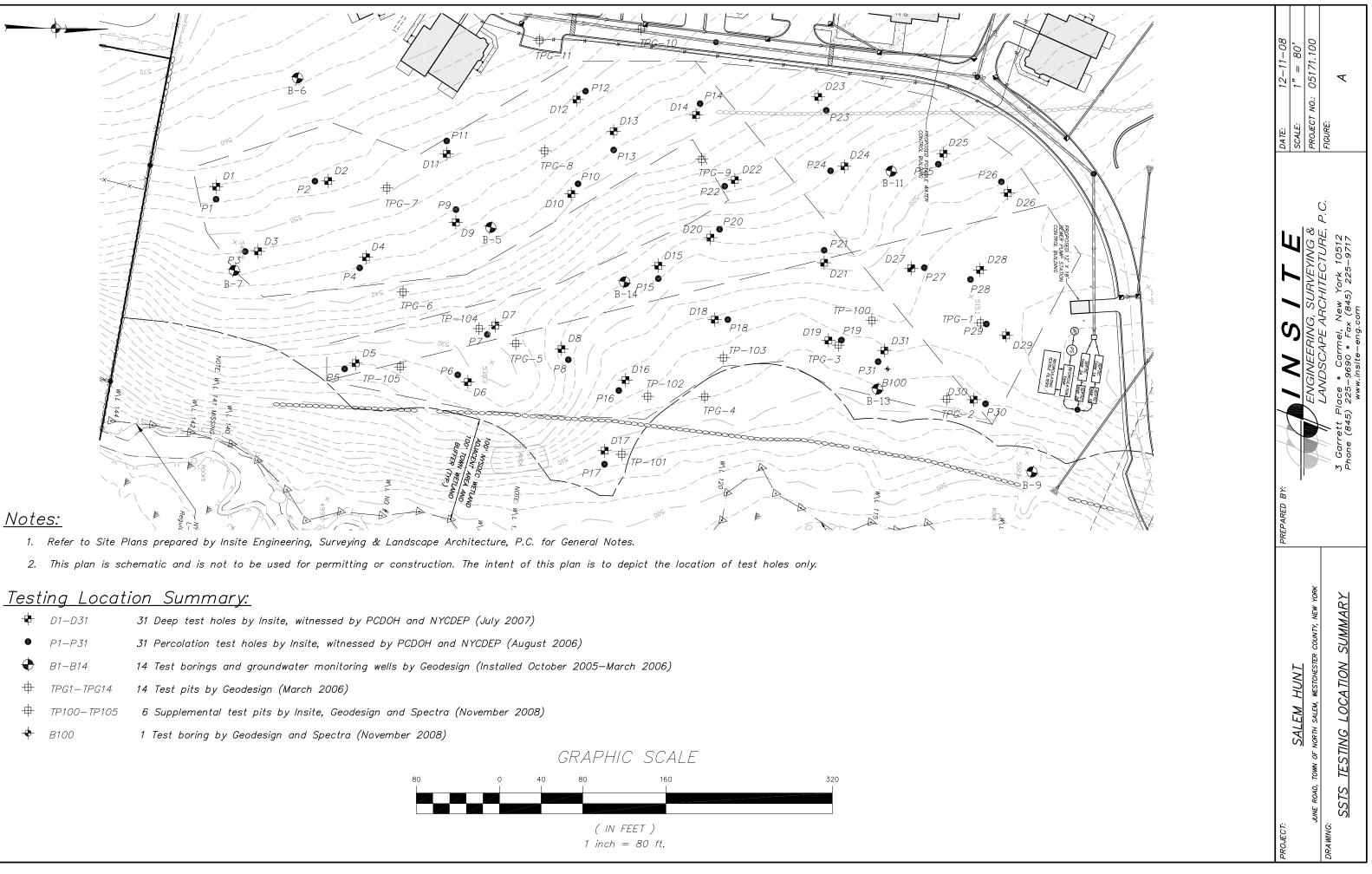
Conclusions:

- 1. Thickness of pervious bedrock zone Although we were not able to quantify the hydraulic conductivity of the bedrock, the referenced testing supports the design thickness of 10 feet of pervious bedrock which contributes to the aquifer thickness used in the model.
- 2. The new test pits and boring, and related visual descriptions and laboratory gradation tests confirm the presence and nature of the higher permeability materials in the area of the SSTS (vs. the siltier lower permeability materials in the upland areas). Specifically the D_{10} size of newly tested soils (0.025 to 0.050 mm in B-100 and TP-100) is similar to the range in the previous data (0.32 to 0.37mm in Test Pits TP-G2, G4 & G9). In addition, the six new test pits (TP-100 to TP-105) indicate that the horizontal extent of the higher permeability soils encompasses much of the proposed SSTS area. Very importantly, the new data also indicates that these more pervious materials (where present) extend down to the surface of the fractured bedrock. This condition allows a hydraulic connection between the overburden and the underlying bedrock aquifer. The absence of groundwater above the bedrock in the new test pits (which were all extended to bedrock by using a larger excavator than previously), provides data which supports this conclusion.
- 3. Despite the absence of groundwater above the bedrock within the more pervious soils, which precluded in-situ testing of the permeability of these materials as had been desired and planned, the constant head permeability laboratory test provides supporting data for hydraulic conductivities used in the model.

Please contact the undersigned if you have any questions.

Very Truly Yours eoDesign, Inc.

Ulrich La Fosse, P.E. Principal


CC: jwatson@insite-eng.com, jdahlgren@timmillerassociates.com

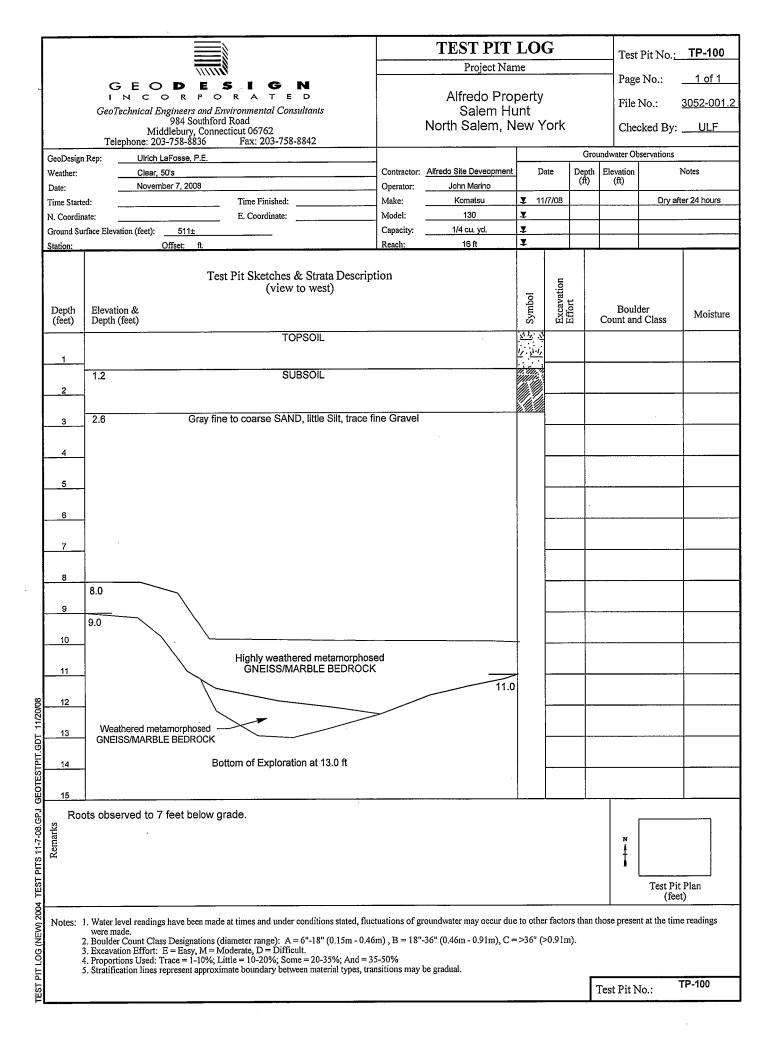
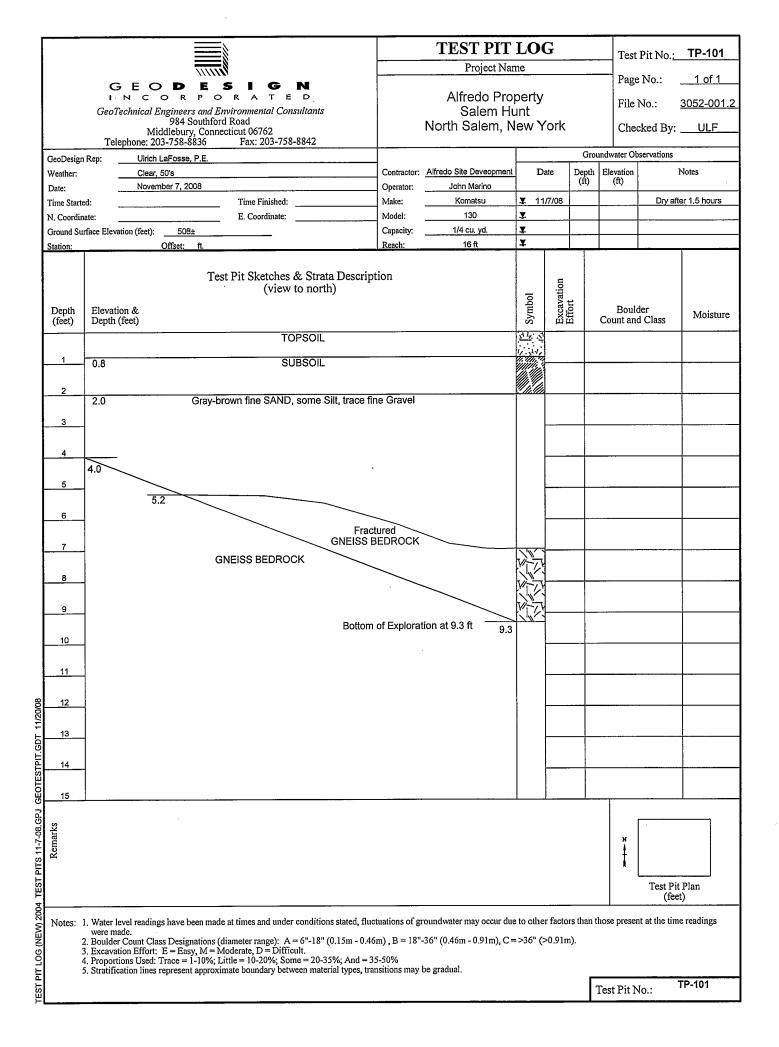

Enclosures :

Figure A; Boring Log (1); Test Pit Logs (6); Gradation Tests (3); Calculated Estimate of In-situ Density (1 page); Constant Head Permeability Test (1); Revised Tables 5-2 and 5-1; and Photographs (10).

M\CL\3052\01.2\Supplemental Testing Memo.doc

GeoDesign, Inc. · 984 Southford Road · Middlebury, CT 06762 · Tel 203-758-8836 · Fax 203-758-8842



Γ															RIN		LOG			Bor	ring No.:	<u></u> B-	100
			C	G	e o	D or		N SI R A	G	N							perty				ge No.:		of 2
			Geo	Techr	ical E	ngineer 984 S	rs and Ea Southfor	<i>nvironme</i> d Road	ental Cor					North S				rk			e No.:		<u>-001.2</u>
					ne: 20	3-758-8	3836	cticut 06 Fax:	5762 203-758	8-8842		<u> </u>	'						Ground		ecked By		
	ring C reman	-	any:	_	Genera Jim Ca	al Boring Isson	s Inc						Туре:	Casing: NW		n <u>pler:</u> SS	D;		Depth	Elev.		Notes	
	oDesi te Sta	÷	ep.:	-		Vaterma iber 12, 3		Date	Finished:	Novem	ber 12.	2008	I.D.: Hammer Wt.:	3.0 in. 300 lbs		18 in 0 Ibs	¥ 11	/12/08	(ft) 13.5	(ft) 497.5	Wet sam	ole	
N.	Coord	linate		-			_	E. Co	ordinate:				Hammer Fall	24 in <u>.</u>	30) in.	∓ 11	/12/08	13.4		After 30 r		
	ound S tion:	Surfa	ce Ele	vation	•	Offset:	5' ft	11.0					Rig Type: Hammer Typ		ch D-50 ic - Hyd		¥ ¥						
	. 					S	ample]	informa	tion				Str					San	nple I	Descri	iption		
æ	Casing Blows/ft			tion	È.	(H)	F	Blows / 6 is	nch Interv	a1	Time ()	re t (%)	Descri	ption	Symbol		`						
Depth (ft)	Casing	Number	Type	Penetration (inches)	Recovery (inches)	Depth (ft)	0-6	6 - 12	12 - 18	18 - 24	Coring Time (min./ft)	Moisture Content (%)	Depth & Elevation(fee	f)		Class	ification Sys	stem: Mo	dified I	Burmist	ег		
F		1	ss	24	3	0.0	2	3	3	3			Sub	,		Lo	ose, brov h Roots,	wn fine	to m			, some	silt,
\vdash		┢																	-/				
┝		2	ss	24	16	2.0	4	6	7	4			2.2 Sai	nd 508.1	3		dium de					0	
┝		-														fine	p 2": fin e Gravel				•		
\vdash		<u> </u>															ttom 14" ce fine G				ı SAND,	trace \$	Silt,
L	5												-				ose, no r	ecove	ry				
		3	SS	24	0	5.0	5	3	4	2							·						
		<u> </u>															ry loose,	tan fir		modi		D trac	<u></u>
		4	ss	24	3	7.0	1	2	1	1						Silt	t, trace F brown fir	Roots, ((1/2"	layer	near sp	oon bo	ttom:
L													9.0				oist)				,		,
1													Grav Sar		0								
		5	ss	24	16	10.0	6	16	17	10					0		nse, bro arse Gra					little fi	ne to
Γ															٥Q								
		6	ss	24	16	12.0	10	9	7	4			· ·		0.0	Me litti	dium de e fine to	nse, bi coarse	rown e (-) (fine t Grave	to coarse el, little S	e SANE ilt, (we), t)
	+													Ŧ	°.C								
-															0.]								
1	2	7	ss	24	12	15.0	9	13	15	24			1		. <i>0</i> .		dium de p 4": fine					inc to	
—															0 0	coa	arse (-) C	Gravel	(up to	o 1 1/	'2"), trac	e Silt	
-		8	ss	7.	6	17.0	75	50/1"			$\left - \right $			ered 493.9		Bot	idle 4": ttom 4":	fine to	coai	se S			τ [
			33	/	0	17.0	10	50/1					າ ອ	ock			avel, trac		(wet))			
_	-	<u> </u>					[REC	= 67%; I	RQD= 25	5.4%]						To	ry dense p 1": bro	wn/gra				AND, I	ittle
20		C-1	С	60	40	19.0					1.3					fine	e to coar	se (-) (Grave	el, tra	ce Silt		
rks	AL 3-i	iger nch	refu dia	isal a mete	t 18 f r casi	ieet be ng dril	elow gra led to 1	ade. 19 feet l	below g	ırade; u	ised 2	2-inch	diameter c	ore barre	əl.								
Remarks									-														
No	tes: +>	Sta-t	ficet	n lina-	TOPTOC	nt gnn-a	imate how	ndary betw	een matori	al tuner ter	insition	mayha	aradual										
	2)	Wate	r level	readin	gs have	been mad	le at times	and under	conditions	stated, fluo	ctuation	s of grou	ndwater may occ noon; SSL = 3.5							suremen	nts were mac	le. AC=1	After
		WOR	'/H = '	Weight	of Rod/J	Hammer		-20%; Som						opin						Bori	ng No.:	B-10	J

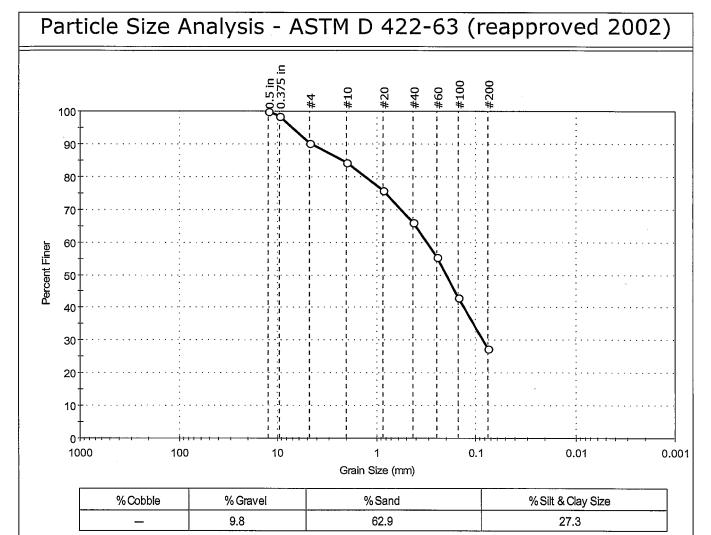
1 - BORING LOG MC 2008-2009 BORING LOG.GPJ GEODESIGN STANDARD .GDT 12/11/08

Γ																NG L ct Name		r F		Bor	ing No.:	B-^	100
				ЭE		_		s I	G	N										Pag	e No.:	2 (of 2
			। Geo			O R Inginee	P O	nvironm	ental Cor	D Design to the second						Prope	-			File	No.:	<u>3052-</u>	-001.2
			Te	elepho	Mio ne: 20	984 Idlebur 3-758-	Southfor y, Conne 8836	ecticut 06	5762 : 203-758	3-8842				North S	Sale	m, Nev	w Yo	ork		Che	cked By	: <u>U</u>	LF
	ing C	-		-	Genera	al Boring								Casing:		npler:					bservations		
	eman: Desig		р.:	-	Jim Ca Brien V	isson Vaterma	an						Type: I.D.:	NW 3.0 in.		SS 38 in.		Date	Depth (ft)	(ft)		Notes	
	e Star Coord			-	Nover	ber 12,	2008		Finished: ordinate:	Novem	ber 12	2008	Hammer Wt. Hammer Fal			0 lbs 🗶 0 in. 🗶		11/12/08 11/12/08			Wet sam After 30 r		
Gro Stati		urfac	e Elev	vation	• •	Offset:		11.0					Rig Type: Hammer Typ			_							
Jai							Sample 1	Informa	tion					rata				Sa	mple I	Descri	otion		
(¥)	Casing Blows/ft			ation s)	ery	(¥)	F		nch Interv	al	Coring Time (min./ft)	Moisture Content (%)	Descr	ription	Symbol				-	-			
Depth (ft)	Casing	Number	Type	Penetration (inches)	Recovery (inches)	Depth (ft)	0-6	6 - 12	12 - 18	18 - 24	Coring (min./	Moistr Conter	Depth & Elevation(fee	et)		Classifica	ation S	System: M	odified E	Burmiste	r		
											.9		Weat Bedrock (0	hered Continued)		(wet)		: gray/			nered Q	UARTZ	ITE,
				_							2.1		22.1			Top 1	7":	Extrem	ely W	eathe	red,		
								-			2		Bed	rock 488.	°	Quart	zite a	and inc	lusion	is of N	NEÍSS /larble ered, wł		
								- 100%	RQD= 9	4 0%1	1					gray/g Quart	greer tzite a	n/purple	e, bioť	ite GN	IEISS v Iarble,	<i>r</i> ith	
25		C-2	С	60	60	24.0		_ 100 %,		4.0 /0]	1.3		-			jointin	-	Quality	Hord		htly We	athorod	4
											1.3					white/	/gray	/green	, biotit	e GÑ	EISS wi de jointi	th Qua	rtzite
											1.4												
		-									1.5												
											1.5			tom 482.	0								
30													of Expl at 29	9.0 ft									
							<u> </u>																
		-																					
35												-											
										· <u> </u>	·												
40																							
		<u>. </u>	. <u> </u>		•				4		·I	*	· · · · · · · · · · · ·										
Remarks																							
Note	2)	Water	· level	readin	represe gs have Recorde	been ma	cimate bou de at times	ndary betw and under	een materia conditions	il types, tra stated, fluc	nsitions tuation	may be s of grou	gradual. ndwater may oc	cur due to oti	ier facto	ors than thos	se pres	ent at the t	ime mea	suremen	ts were mad	ie. $AC = A$	liter
	3)	Abbre	viatio H = V	ons: A = Weight	 Auger; of Rod/ 	C = Cor Hammer				iston Samp 6; And = 3:		Split Sp	ooon; SSL = 3.5	Inch ID Split	Spoon	; ST = Shelb	by Tub	e; V = Var		Borin	ng No.:	B-100)

			TEST PIT	LO	G		Test	Pit No.:	TP-102
			Project Na	me	-				
	GEODESIGN		Alfred de Dre				Page	e No.:	<u>1 of 1</u>
	INCORPORATED GeoTechnical Engineers and Environmental Consultants		Alfredo Pro Salem H				File	No.:	3052-001.2
	984 Southford Road Middlebury, Connecticut 06762		North Salem, N		´ ork		Che	cked By:	ULF
	Telephone: 203-758-8836 Fax: 203-758-8842	· · · · · · · · · · · · · · · · · · ·		1		Grou	ndwater Ol	oservations	
GeoDesigr Weather:	n Rep: Ulrich LaFosse, P.E. Clear, 50's	Contractor:	Alfredo Site Deveopmen	D	ate		Elevation		Notes
Date:	November 7, 2008	Operator:	John Marino]		(ft)	(ft)		
Time Start N. Coordir		Make: Model:	Komatsu 130	<u>₹ 11</u> ∓	/7/08			Dry af	iter 1.5 hours
	Inface Elevation (feet): 514±	Capacity:	1/4 cu. yd.	¥.					
Station:	Offset: ft.	Reach:	16 ft	¥					
	Test Pit Sketches & Strata Descrip (view to)	otion		10	ation				
Depth (feet)	Elevation & Depth (feet)			Symbol	Excavation Effort		Bould Count and		Moisture
	TOPSOIL			<u>x*1,</u> . <u>*</u> 1, ., .1,					
1	0.8 SUBSOIL								
2									
3									
4	3.3 Gray fine SAND, little Silt, trace fine G mixed with weathered Cobbles and Bo	Bravel, oulders							<u>_</u>
5									
6									
			6.3	3					
7	-	(<u> </u>			-			
9	9.0	GNEISS BE	DROCK						
10	Bottom of Exploration at 9.0 ft								
11									
12	-								
13	-								
14									
15]								<u> </u>
Ro	ots observed to 3 feet below grade.]
Remarks							N 4		
								Test Pit (fee	
NEN (NEN	 Water level readings have been made at times and under conditions stated, flue were made. Boulder Count Class Designations (diameter range): A = 6"-18" (0.15m - 0.44) Excavation Effort: E = Easy, M = Moderate, D = Difficult. Proportions Used: Trace = 1-10%; Little = 10-20%; Some = 20-35%; And = 3 	6m),B=18"					ose preser	ıt at the tim	ie readings
	 Proportions Used: Trace = 1-10%, Little = 10-20%; Some = 20-35%; And = 3 Stratification lines represent approximate boundary between material types, tra 	ansitions may	be gradual.			Г			TP-102
ES						_ 1	est Pit N	10.:	

h

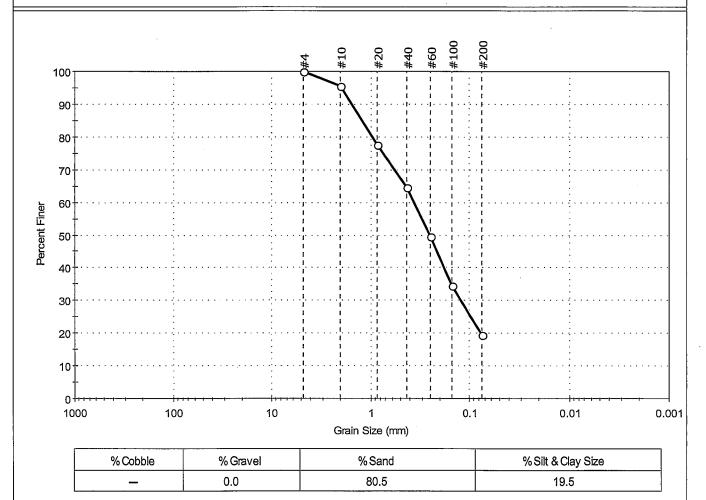
			TEST PIT	LO	G		Test	: Pit No.:	TP-103
			Project Nar	ne				e No.:	1 of 1
· .	GEODESIGN INCORPORATED		Alfredo Pro	oertv					
	GeoTechnical Engineers and Environmental Consultants 984 Southford Road		Salem Hi	int			File	No.:	3052-001.2
	Middlebury, Connecticut 06762 Telephone: 203-758-8836 Fax: 203-758-8842		North Salem, N	ew Y	′ork			cked By:	ULF
GeoDesig		-	Alfanda Olta Davisaniani		.	· · · · · ·		bservations	21-1
Weather: Date:	Clear, 50's November 7, 2008	Operator:	Alfredo Site Deveopment John Marino	U	ate	Depth I (ft)	Elevation (ft)		Notes
Time Star		Make:	Komatsu		/7/08			Dry afte	er 30 minutes
N. Coord	inate: E. Coordinate: turface Elevation (feet): 513±	Model: Capacity:	130 1/4 cu. yd.	¥. ¥					
Station:	Offset: ft.	Reach:	14 6 ft	¥	·				
	Test Pit Sketches & Strata Descrip (view to)	tion		ol	ation				
Depth (feet)	Elevation & Depth (feet)			Symbol	Excavation	c	Boul count an		Moisture
	0.4 TOPSOIL / HUMUS UBSOIL			<u>st 14</u> : <u>st</u> 11: 1111, 11	_				
1					E				
2	1.4 Gray-brown to brown fine SAND, little	e Silt			E	_			
3					E				
4					E				
5	4.3 Fine to medium SAND, little Silt				E				
6	5.0 FRACTURED BEDROCK / Possible BOULDER 5.6	_			м				
7									
8			ation at 6.9 ft 6.9						
	1								
9	1								
10	-	-							
11	_								
80/07/L	-					_			
<u>13</u>	-					+			
14			v						
2 									
						<u> </u>			·
12 12 13 12 14 12 14 12 14 12 14 12 14 12 14 12 14 14 14 14 14 14 14 14 14 14 14 14 14							N + R	Test Pit (fee	Plan t)
Notes:	 Water level readings have been made at times and under conditions stated, fluc were made. Boulder Count Class Designations (diameter range): A = 6"-18" (0.15m - 0.46 3. Excavation Effort: E = Easy, M = Moderate, D = Difficult. Proportions Used: Trace = 1-10%; Little = 10-20%; Some = 20-35%; And = 3 5. Stratification lines represent approximate boundary between material types, tra 	5m), B = 18" 5-50%	-36" (0.46m - 0.91m), C =				se prese	nt at the tim	e readings
2			-			Te	st Pit I	10.:	TP-103
<u>- L</u>									


			TEST PIT	LO	G	<u>-</u>	Test	Pit No.:	TP-104
			Project Na	me					
	GEODESIGN INCORPORATED		Alfredo Pro	nerfv			-	e No.:	<u>1 of 1</u>
	GeoTechnical Engineers and Environmental Consultants		Salem H				File	No.:	3052-001.2
	984 Southford Road Middlebury, Connecticut 06762 Telephone: 203-758-8836 Fax: 203-758-8842		North Salem, N	lew Y	′ork		Che	cked By:	ULF
GeoDesig						Grou	indwater Ol	servations	
Weather:	Clear, 50's	Contractor:	Alfredo Site Deveopment	D	ate	Depth (ft)	Elevation		Notes
Date:	November 7, 2008	Operator:	John Marino			(u)	(ft)		
Time Start N. Coordin		Make: Model:	Komatsu 130	¥ 11 ▼	17/08			Dry afte	er 10 minutes
	Inface Elevation (feet): 530±	Capacity:	1/4 cu, yd,	¥					
Station:	Offset: ft.	Reach:	16 ft	¥					
	Test Pit Sketches & Strata Descrip (view to)	otion		lo	ation				
Depth (feet)	Elevation & Depth (feet)			Symbol	Excavation		Boul Count an		Moisture
	TOPSOIL			<u></u>					
1	0.8			17:3-17					
2	1.9 Gray fine SAND, little (-) Silt								
3	•								
4									
5									
6									
7									
8									
9									
10									
		*	///////////////////////////////////////						
11	Inferred BEDROCK								
	Bottom of Exploration at 10.0 ft								
12									
13									
14									
15									L
Roon Remarks Remarks	ots observed to 4.5 feet below grade. Noration ended at 10 feet below grade on inferred bedrock.						N 4 1 11	Test Pit (fee	
	1. Water level readings have been made at times and under conditions stated, fluctwere made. 2. Boulder Count Class Designations (diameter range): $A = 6"-18"$ (0.15m - 0.46 3. Excavation Effort: $E = Easy, M = Moderate, D = Difficult.$	5m), B = 18"	-				iose preser	t at the time	e readings
	 Proportions Used: Trace = 1-10%; Little = 10-20%; Some = 20-35%; And = 3 Stratification lines represent approximate boundary between material types, tra 		be gradual.						
						Г	est Pit N	0.:	ГР-104

			TEST PIT		G		Test	Pit No.:	TP-105
	GEODESIGN		Project Na	ne			Page	No.:	1 of 1
	INCORPORATED GeoTechnical Engineers and Environmental Consultants		Alfredo Pro Salem Hi	perty			File	No.:	<u>3052-001.2</u>
	984 Southford Road Middlebury, Connecticut 06762 Telephone: 203-758-8836 Fax: 203-758-8842		North Salem, N		′ ork		Cheo	cked By:	ULF
GeoDesign						Gro	undwater Ob	servations	
Weather:	Clear, 50's November 7, 2008		Alfredo Site Deveopment John Marino	D	ate	Depth (ft)	Elevation (ft)		Notes
Date: Time Starte		Operator: Make:	Komatsu	T 11	/7/08			Dry aft	er 10 minutes
N. Coordin		Model:	130	¥					
Ground Sur Station:	face Elevation (feet): Offset:	Capacity: Reach:	1/4 cu. yd. 16 ft	¥ ₹					
	Test Pit Sketches & Strata Descri (view to)			1	ttion				
Depth (feet)	Elevation & Depth (feet)			Symbol	Excavation	EIIOU	Bould Count and		Moisture
	TOPSOIL			11 34 14 34					
1	0.8 SUBSOIL								
2									
3	3.0 Gray fine SAND, little Silt						4		-
4									
5									
6									
7									
8									
9	8.5 XXXXXX Inferred BEDROCK	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	///////////////////////////////////////						
10	Bottom of Exploration at 8.5 f	ť							
11									
12									
13									
14									
15									
Exp	loration ended at 8.5 feet below grade on inferred bedrock.			I	1	1			
Remarks							N + 		
								Test Pi (fee	
2	. Water level readings have been made at times and under conditions stated, fl were made. . Boulder Count Class Designations (diameter range): A = 6"-18" (0.15m - 0. . Excavation Effort: E = Easy, M = Moderate, D = Difficult.	46m) , B = 18'					hose preser	nt at the tirr	e readings
4	Proportions Used: Trace = 1-10%; Little = 10-20%; Some = 20-35%; And = 5. Stratification lines represent approximate boundary between material types, t	35-50% ransitions may	be gradual.			Ŀ	Post Dit N	Int	TP-105
							Fest Pit N	10.:	

`

	Client:	GeoDesigr	i, Inc.				
	Project:	Salem Hur	nt				
,	Location:	N Salem, I	٧Y			Project No:	GTX-8675
	Boring ID:	B-100		Sample Type	e: jar	Tested By:	ар
n	Sample ID	: S-5		Test Date:	11/18/08	Checked By:	jdt
	Depth :	10-12 ft		Test Id:	142299		
	Test Comm	nent:					
	Sample De	scription:	Moist, light c	live brown silty	' sand		
	Sample Co	mment:					

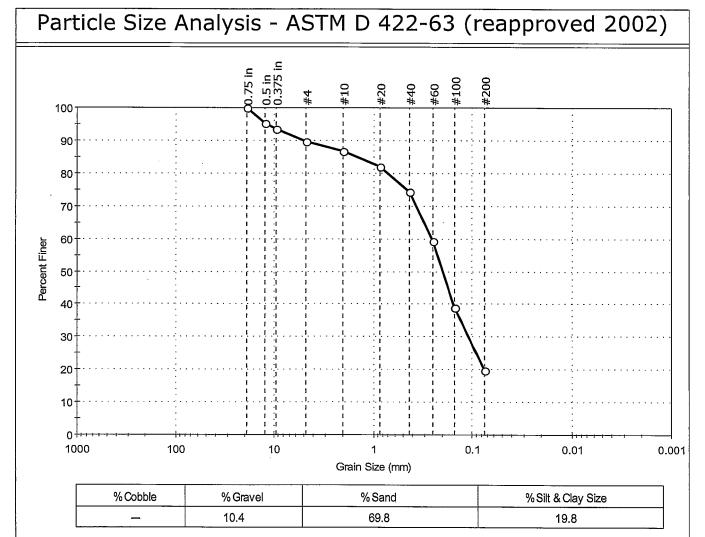

Sieve Name	Sieve Size, mm	Percent Finer	Complies
0.5 in	12.50	100	
0.375 in	9.50	99	
#4	4.75	90	
#10	2.00	84	
#20	0.85	76	
#40	0.42	66	
#60	0.25	55	· · · · · · · · · · · · · · · · · · ·
#100	0.15	43	
#200	0.075	27	

	Coefficients
D ₈₅ =2.2327 mm	D ₃₀ =0.0843 mm
D ₆₀ =0.3142 mm	D15 = N/A
D ₅₀ =0.1999 mm	D10 = N/A
$C_u = N/A$	$C_c = N/A$
	Classification
<u>ASTM</u> N/A	
AASHTO Silty Gr	avel and Sand (A-2-4 (0))
Samp	le/Test Description
	cle Shape : ROUNDED
Sand/Gravel Hard	ness : HARD

GeoTesting e x p r e s s a subsidiary of Geocomp Corporation

Client:	GeoDesig	n, Inc.				
Project:	Salem Hu	nt				
Location:	N Salem,	NY			Project No:	GTX-8675
Boring ID:	B-100		Sample Type	e: jar	Tested By:	ар
Sample ID	:S-6A		Test Date:	11/18/08	Checked By:	jdt
Depth :	12-14 ft		Test Id:	142300		
Test Comn	nent:					
Sample De	escription:	Moist, light	olive brown silty	' sand		
Sample Co	mment:					

Particle Size Analysis - ASTM D 422-63 (reapproved 2002)


Sieve Name	mm	Percent Finer	Spec. Percent	Complies
#4	4.75	100		
#10	2.00	96		
#20	0.85	78		
#40	0.42	65		
#60	'0.25	49		
#100	0.15	35		
#200	0.075	19		

<u> </u>	efficients
D ₈₅ =1.2098 mm	D ₃₀ =0.1213 mm
D ₆₀ =0.3622 mm	D15 = N/A
D ₅₀ =0.2548 mm	$D_{10} = N/A$
Cu =N/A	C _c =N/A
Clas	ssification
ASTM N/A	
AASHTO Silty Grave	l and Sand (A-2-4 (0))
Sample/1	Fost Description
	lest Description
Sand/Gravel Particle 9	
Sand/Gravel Hardness	Shape :
	Shape :
	Shape :
	Shape :

GeoTesting express

a subsidiary of Geocomp Corporation

Client:	GeoDesig	n, Inc.				
Project:	Salem Hu	nt				
Location:	N Salem,	NY			Project No:	GTX-8675
Boring ID:	TP-100		Sample Type	: bag	Tested By:	ар
Sample ID:	Test Pit Sa	mple	Test Date:	11/17/08	Checked By:	jdt
Depth :	3-10 ft		Test Id:	142301		
Test Comm	ient:					
Sample De	scription:	Moist, dark	olive brown silty	' sand		
Sample Co	mment:					

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
0.75 in	19.00	100		
0.5 in	12.50	95		
0.375 in	9.50	93		
- #4	4.75	90		
#10	2.00	87		
#20	0.85	82		
#40	0.42	74		
#60	0.25	59		
#100	0.15	39		
#200	0.075	20		

Coeff	icients
D ₈₅ =1.4492 mm	D ₃₀ =0.1082 mm
D ₆₀ =0.2558 mm	D15 = N/A
D ₅₀ =0.1975 mm	$D_{10} = N/A$
$C_u = N/A$	$C_c = N/A$
Classi	fication
ASTM N/A	<u></u>
AASHTO Silty Gravel a	nd Sand (A-2-4 (0))
<i>,</i>	
Sample/Ter	st Description
Sand/Gravel Particle Sha	ape : ROUNDED
Sand/Gravel Hardness :	HARD

3052-01.2TP-100 and B-100Salem Hunt, North Salem NY

Estimate of Insitu Dry Unit Weight (gamma) in pcf Based on SPT "N" Value

N=15 blows pef ft.	Dr	50 %
	gamma gamma max gamma min	100 pcf 120 pcf 85 pcf
gamma max/gamma	1.2	
gamma-gamma min	15	
gamma max-gamma min	35	
	1	
Relatve Density, Dr	51%	

-

GeoTesting	Client: Project Name:	GeoDesign Inc.		
express	Project Location: GTX #:	 8675		
a subsidiary of Geocomp Corporation	Start Date:	11/17/08	Tested By:	ema
	End Date:	11/18/08	Checked By:	jdt
	Boring #:	TP-100		
	Sample #:	Test Pit		
	Depth:	3-10 ft		
	Visual Description:	Moist, dark olive brow	n silty sand	

Permeability of Granular Soils (Constant Head) by ASTM D 2434

Sample Type:	Remolded	. <u></u> u	, ,, <u>,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,</u>	
Sample Information:	Maximum Dry Density:	pcf		
	Optimum Moisture Content:	%		
	Compaction Test Method:			
	Classification (ASTM D 2487):			
	Assumed Specific Gravity:	2.65		
Sample Preparation / Test Setup:	Target Compaction: 100 pcf at air-o material screened out of sample prio	or to testing (7% of sam	nple). 5.27 lb surcharg	•••
	Parameter	Initial	Final	
	Height, in	4.03	4.03	
	Diameter, in	3.98	3.98	
	Area, in ²	12.4	12.4	
	Volume, in ³	50.1	50.1	
	Mass, g	1316	1627	
	Bulk Density, pcf	100	124	
	Moisture Content, %	0.5	24.3	
	Dry Density, pcf	99.5	99.5	
	Degree of Saturation, %		97.0	
	Void Ratio, e		0.66	

Date	Reading #	Volume of Flow, cc	Time of Flow, sec	Flow Rate, cc/sec	Gradient	Permeability, cm/sec	Temp., °C	Correction Factor	Permeability @ 20 °C, cm/sec
11/17	1	0.75	15	0.05	0.39	1.6E-03	15.0	1.135	1.8E-03
11/17	2	0.77	15	0.05	0.39	1.7E-03	15.0	1.135	1.9E-03
11/17	3	0.78	15	0.05	0.39	1.7E-03	15.0	1.135	1.9E-03
11/17	4	0.92	15	0.06	0.57	1.3E-03	15.0	1.135	1.5E-03
11/17	5	0.91	15	0.06	0.57	1.3E-03	15.0	1.135	1.5E-03
11/17	6	0.91	15	0.06	0.57	1.3E-03	15.0	1.135	1.5E-03
11/17	7	0.98	15	0.07	0.63	1.3E-03	15.0	1.135	1.5E-03
11/17	8	0.97	15	0.06	0.63	1.3E-03	15.0	1.135	1.5E-03
11/17	9	0.99	15	0.07	0.63	1.3E-03	15.0	1.135	1,5E-03

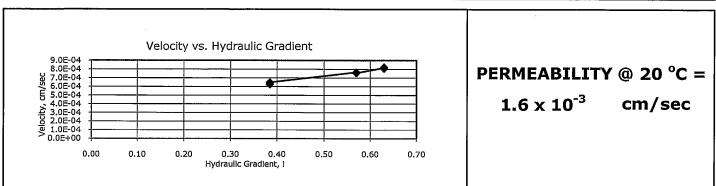


Table 5-1 SUMMARY OF GROUNDWATER, BEDROCK, AND GRADATION DATA (Revised 11/08)

North Salem Property North Salem, New York Project Number 3052-01

hate of Reading, 11/12/0

	Groundwater		LIEVATION	(ft.)			-	-			522.7	653.9		<528.8		494,8				100 5	0.00	505.3	
Jate of Reading: 11/1/2/06	Depth to			Ground (ft.)		_					19.1	85	2	Dry at 17.0		7.2				Desired 11 G		17.5	
ä	Denth to		Groundwater	from Ref. (ft.)							21.0	115	2	Ory at 19.5		9.8				Pres 413 7	UIJ AL 13.1	19.8	
0	Groundwater			(ft.)		503.5	0.002	2.620	542.6	564.8	521	550.7	1.200	529.1	566.8	498.0	550.9	504.9	579.4	1007	1.001	< <505.5	
Date of Reading: 3/26/06	Denth to		Groundwater from	Ground (ft.)		0.7		6,0	1.7	5.3	19.8	a 11	0.11	16.8	6,5	4.0	4	19.4	26		C I J IE ÁIN	Drv at 17.2	
	Danth to		Groundwater	from Ref. (ft.)		9.0		8.7	10.7	7.3	21.7	444	0.41	19.3	9.0	6.6	66	24.9		3.0		Drv at 19.5	
-	Communitor	Groundwater	Elevation	(H.)		505.4		8723	543.2	566.6	5776		5700	_	566.8		_	5065		7'070	_	-	
Date of Reading: 3/14/06	Denth to		Groundwater from	from Ref. (ft.) Ground (ft.)		51		5.4	17	3.5	19.5		0.01	Drv at 17.1	6.5		_	47.B		0.0			_
ä		Deptn to	Groundwater	from Ref. (ft.)		71		8.1	10.1	55	Ţ		13.0	Drv at 19.54	0.6	•		5.02	212	0.4			
		Groundwater		(tt.)		End 3	0.000	524.8	545.6	565.7	1.000	1.020	555.9										
Data of Deading: 11/7/05		Depth to	Groundwater from	Ground (ft.)		¢,	4.0	4.4	47			10.4	6.4										
-		Depth to	Groundwafer	from Ref. (ft.)		ŝ	2'0	7.1	4.4	2	5	10,5	94										
	2	Groundwater	Elevation	(#)			1.475	5249	2 2 2 2		1000	5.4.2	557.2	-									
	Date of Reading: 11/1/03	Depth to	Constantian from	Ground (#)	fail pupper	1	0.0	43			71	17.6	51	5									
		Depth to		Goundated (#)	This year fire	;	7.8	02	2 2	1.0	4.0	19.5	10	3									
		Welt		Kererence	CIEVATION (14.)		512.5			5.500	572.1	543.7	5000		548.3	575.8	504.6	557.5	526.8	534.5	0.012	013.0	525.0
		I Wall		Stickup	(11)		20		7	30	20	1.9		2.0	25	25	26	2.5	2.5	25		5	23
		Pullor		Surrace	Elev. (II.)		5105		7.876	550.3	570.1	541.8	0002	2700	545.8	573.3	502.0	555.0	524.3	532.0		27116	522.7
		MAIL		.0N			2		24	5 2 2	7	8		\$	B-7	8	68	8-10	<u>1</u>	8-12		8-13	8-14 4

Summary of Bedrock Data

Notes	Roler há relusal Auger rensas Auger and Auger and
Bedrock Elevation (ft.)	488.5 503.2 523.4 523.4 531.4 531.4 531.0
Depth to Top of Bedrock (ft.)	220 260 255 255 255 250 2150 2155 2155 2155 21
Ground Surface Elev. Elev. (ft.)	\$10.5 \$28.2 \$28.2 \$50.3 \$50.3 \$50.3 \$50.3 \$51.4 \$57.3\$
Well No.	8

SILT and fine to coarse SAVU), trace fire Gravel SILT, some fine to coarse SAVU), trace fire Gravel Fire to coarse SAVU) and SILT, trace fire Gravel Fire to medium SAVD and SILT, trace fire Gravel Fire to medium SAVD and SILT, trace fire Gravel Fire to medium SAVD and fire to coarse Gravel Fire to medium SAVD and fire to coarse Gravel Fire to medium SAVD and fire to coarse Gravel Fire to medium SAVD, and fire to coarse Gravel Fire to medium SAVD, some SIL, trace fine Gravel Fire to medium SAVD, some SIL, trace fine Gravel Fire to medium SAVD, some SIL, trace fine Gravel

5-7 5-7 5-7 5-7 5-7 5-7 2-7-7.8 2-7-7.8 2-7-7.8 2-7-7.8 2-7-7.8 2-7-7.8 2-7-7.8 2-7-7.8

S-2 S-2 S-2 S-2 S-2 S-2 S-2 S-2 S-2 Composite Composite Composite Composite

8-2 8-4 8-4 8-4 8-4 8-4 8-4 17-61 17-61 17-61 17-62

Summary of Gradation Test Data Burmister Description

Sample Depth

Sample

Boring No.

The to medium SAND, little Sit, trace fine Gravel The to medium SAND, some Sit, trace fine Gravel The to medium SAND, little fine Gravel, little, Sit

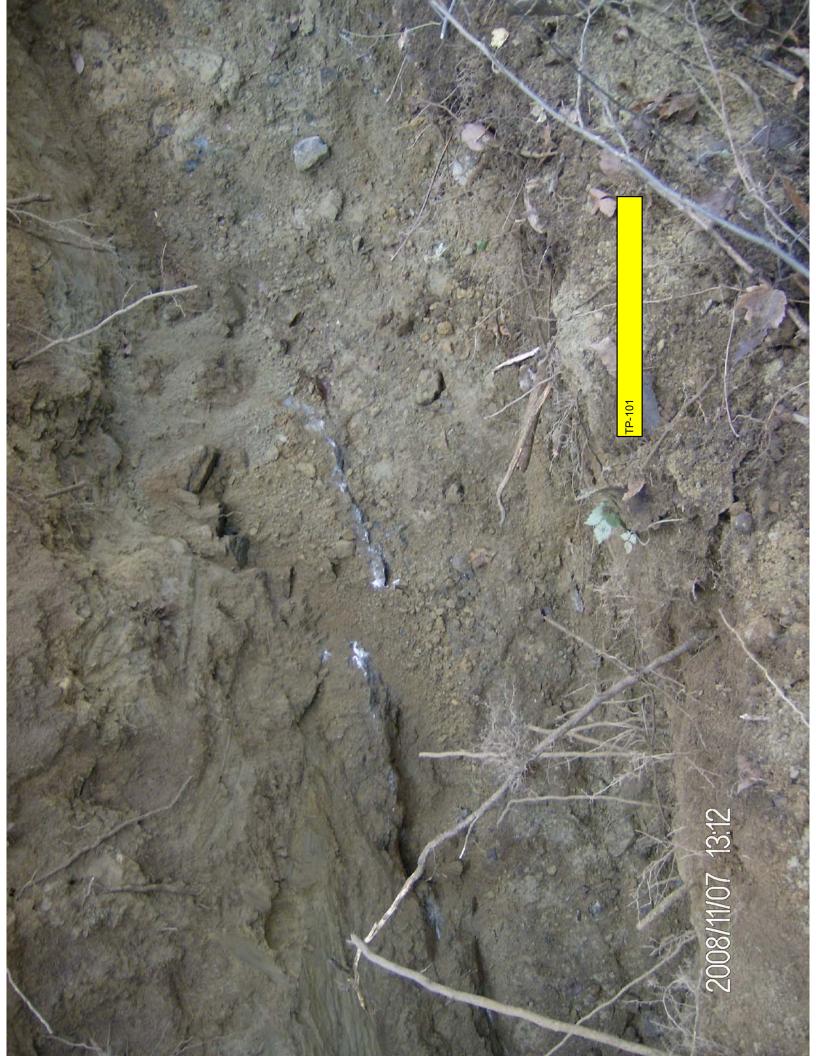
<u>Notes:</u> 1.) Ground surface and well reference elevations based on survey data provided by Insite Engineering and interpolation of site topography relative to NAVD 1988 datum. 2.) Eding Head Tests performed at boings B-1, B-2, B-4, See Appendix 4 for field test data and results. 3.) Ground surface elevation at B-100 estimated based on elevation at B-13 - Not surveycd.

Summary of Groundwater Data

				T/ K(to Estin	TABLE 5-2 (revised 11/08)Kozeny - Carman Analysesto Estimate Coefficient of Permability	ed 11/08) Analyses of Permabilit	Ly L			
				E.	North Salem Property North Salem, New York	operty w York				
Test Boring/	Sample	Sample	D10	SPT "N-value	Descriptive	Relative	in-situ	in-situ	Coefficient of	Coefficient of
Test Pit	No.	Depth			Density	Density	void ratio	porosity	Permability	Permability
No.		(ft.)	(uuu)	(blows / ft)		(%)	υ	_	k (cm/sec)	k (ft/day)
B-2	S-2	5'-'7'	0.006	16	Medium dense	44	0.542	0.35	1.75E-05	4.95E-02
B-3	S-2	5'-'7'	0.002	50	Very dense	85	0.255	0.20	2.48E-07	7.04E-04
B-4	S-2	5-7	0.007	13	Medium dense	8 4	7/9.0	0.3/	2.81E-05	7.95E-UZ 2.14E 02
9-8	S-2		0.009	38	Dense	()	0.00	67.0	0 001 05	0.14E-02 0.E0E-04
B-7	S-2 & S-3	5'-'7'/10'-12'	0.035	48	Lense	803	607.0	0.21	0.03E-U3 6.41E.05	2.30E-01
8 7	2-0	1-	c1.0.0	C7 88		8	0.220	0.18	6.56F-05	1.02E-01
	2-0	1-0	0.025	40	Dense	75	0.325	0.25	7.61E-05	2.16E-01
21-20	4	2	222.2					Minimum:	2.48E-07	7.04E-04
							Upland Area	Maximum:	8.83E-05	2.50E-01
									1 20 E 0E	4 DAE 04
							_	Avelage.		1.445-01
TP-G2	Composite	2.7'-7.8'	0.037	1	Medium dense	40	0.570	0.36	7.59Ë-04	2.15E+00
TP-G4	Composite	2.3'-7.5'	0.032	I	Loose	35	0.605	0.38	6.64E-04	1.88E+00
TP-G9	Composite	1.7'-7.3'	0.030	I	Loose	35	0.605	0.38	5.84E-04	1.65E+00
B-100	S-5	10'-12'	0.025	33	Dense	65	0.395	0.28	1.30E-04	3.68E-01
B-100	S-6A	12'-14'	0.040	15	Medium dense	40	0.570	0.36	8.87E-04	2.51E+00
TP-100	Composite	3'-10'	0.050	I	Loose	30	0.640	0.39	1.88E-03	5.32E+00
	:							Minimum:	1.30E-04	3.68E-01
							SSTS AREA	Maximum: Averade:	1.88E-03 8 17 F-04	5.32E+00 2.32E+00
SPT	Descriptive	Relative		emin	emax			100000		
(bl/ ff)	Density	Density								
		(%)		0.15	0.85					
0 to 4	Very loose	0 to 15								
4 to 10	Loose						÷			
10 to 30	Medium Dense									
30 to 50	Dense	65 to 85								
50 +	Very dense	85 to 100								
Notes:		descriptive der	Isity, and	1 SPT values descriptive density, and relative density for test pit samples estimated from data from nearest test borings	est pit samples est	limated from d	lata from neares	t test borings		
November 08 Supplemental Testing/North	emental Testing\∿		zeny-Cari	Salem Kozeny-Carman (rev 11_08).xlsNorth Salem Kozeny-Carman (rev 11_08).xls	North Salem Koze	ny-Carman (re	ev 11_08).xls	F	Table was revised on11/26/08	11/26/08

M:\CL\3052\01.2\Nov 12/11/2008

.



Decomposed Gneiss / Marble Bedrock AFTER Being Broken Up (by hand pressure only) From TP-100 (depth of approximately 9 to 12 feet)

101

31 × 10

d/b/a GeoDesign, Inc. P.C.

April 21, 2009 File No. 3052-01.2

Mr. William Balter Wilder Balter Partners 570 Taxter Road Elmsford, NY 10523

Via E-mail <u>BBalter@WilderBalter.com</u>

Re: Hydrogeology Investigation Addendum North Salem Property North Salem, New York

Dear Mr. Balter:

The attached information presents the updated findings and conclusions of the updated hydrogeology model which reflects the presently envisioned flow distribution for the final subsurface treatment and disposal at the proposed North Salem site, located off of June Road in North Salem, New York.

In conclusion, the reduced per square foot flow rate which results from not cycling the flow (as per the previous design and analyses) will result in a lower groundwater mound than previously predicted. In turn, a significantly reduced amount of fill is now recommended to maintain vertical separation between the post-flow groundwater levels and site grades.

Please contact the undersigned if you have any questions.

Very Truly Yours,

GeoDesign, Inc.

Original Signed

Ulrich La Fosse, P.E. (NY, CT & MA) Principal

PC John Watson, P.E. (Insite) jrjwatson@optonline.net John Bainlardi (Wilder Balter Partners) - jbainlardi@wilderbalter.com

 $M\CL\3052\01.2\March2009 Revisions\HydogeologyreportaddendumCoverLetter.doc$

This document comprises an addendum to **GeoDesign**'s February 5, 2007 hydrogeology report for the North Salem site, located off of June Road in the town of North Salem, New York.

This report includes results of an updated groundwater model based on the proposed septic area and proposed septic effluent flow rates which are current as of April 2009.

Updated Model Results – Groundwater Mounding

The most recent SSDS layout (copy attached as Figure SSDS-1), as prepared by Insite Engineering and provided to GeoDesign on April 13, 2009, was used to update the previous model. The septic effluent will be distributed into two groups of trenches. Unlike the previously contemplated SSDS, due to the proposed pre-treatment of the septic effluent, the flow will not be cycled. That is the entire flow will be distributed to the entire trench all the time.

The resulting design septic effluent flow of 16,000 gallons per day (gpd) will be distributed to the entire area of approximately 150,000 square feet.

The currently proposed SSDS area encompasses the same general area which was previously modeled in February 2007 and submitted in our February 2007 Hydrogeology Investigation. For this reason the previous model calibration is still applicable and was not modified.

Similarly, the presently proposed septic recharge trenches are very similar in location and in footprint to those modeled in September 2007 and submitted in September 2007 in our Hydrogeology Investigation Addendum. Thus, the model was not modified other than to adjust the effluent flow rate per square foot.

The revised model's flow rates are summarized in Table 1A.

Tables 2A presents the field data (observed), the results of the calibrated model, the predicted post-development groundwater levels (groundwater rise or mounding), and (as necessary) the thickness of fill required to maintain the post-development groundwater levels at a minimum depth of about 3 to 4 feet.

As shown on Table 2A, the predicted groundwater rise at well locations is insufficient to warrant filling (at the well locations). However, the attached Figure No. 1 depicts the contoured post development depth to groundwater contours (in feet) in the limited areas where the groundwater mound is predicted to approach the ground surface. The figure includes a bar scale and each grid "box" is 50 feet by 50 feet. The red lines on this figure depict the edge of the proposed SSDS in the area of concern.

Figure No. 1 depicts the extent of the limited areas where the predicted mound depth will be as shallow as approximately one foot below existing grades. The recommended areas and

thicknesses of fill required to increase this vertical separation distance are also depicted on Figure 1.

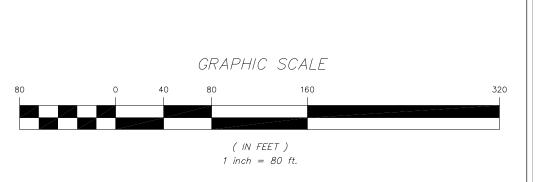
This information should be used Insite for finalize proposed site grading.

Conclusions

The site of the proposed North Salem property development on June Road in North Salem, New York has been the subject of a hydrogeological investigation for the purpose of predicting the groundwater flow conditions under a proposed sewage disposal system from a new residential development.

Based on the results of the field investigations, review of precipitation data, review of published USGS geological and groundwater data for this locale, preliminary hydrogeological analyses including the preparation of a three-dimensional computer model, we have been able to make reasonable predictions (simulations) of the groundwater flow conditions at the site. These predictions were made after the groundwater model was first calibrated to known groundwater flow patterns at the site. Following calibration, a simulation was performed using a 16,000-gpd sewage flow rate in the area of the proposed subsurface disposal system. We also considered the effect of the site development on the groundwater recharge and on the aquifer properties.

Based on the results of this simulation, we conclude that a very limited area will require filling to increase the vertical separation between existing site grades and predicted groundwater mound levels.


Limitations

This report is subject to the limitations included in our February 5, 2007 report.

<u>Notes:</u>

- 1. Refer to Site Plans prepared by Insite Engineering, Surveying & Landscape Architecture, P.C. for General Notes.
- 2. This plan is schematic and is not to be used for permitting or construction. The intent of this plan is to depict the layout of the proposed primary and expansion absorption trenches.
- 3. The primary SSDS absorption trenches (10,000 I.f. minimum, required 10,068 I.f. provided) and expansion SSDS absorption trenches (8,000 I.f. minimum, required 8,040 I.f. provided) will be evenly divided into two groups (Group 1, and Group 2). Each group will be divided into 6 sections, section 1A, 1B, 1C, 1D, 1E, 1F and section 2A, 2B, 2C, 2D, 2E, 2F.

		04TE- 04TE- 04	CT NO.	FIGURE: SSDS-1
				- LANDSCAPE ARCHITECTURE, P.C. 3 Garrett Place • Carmel, New York 10512 Phone (845) 225-9690 • Fax (845) 225-9717 www.insite-eng.com
<u>SSD</u> 500 500 502 502 • D15 • P15 • P15 1A	S LEGEND EXISTING 10' CONTOUR EXISTING 2' CONTOUR PROPOSED 10' CONTOUR PROPOSED 2' CONTOUR PROPOSED 2' WDE PRIMARY ABSORPTION TRENCH PROPOSED 2' WDE EXPANSION ABSORPTION TRENCH DEEP TEST HOLE PERCOLATION TEST HOLE SSDS GROUP/SECTION DESIGNATION		<u>SALEM HUNT</u>	SSDS SCH

 Table 2A
 Model based on Septic Layout with no Cycling as of April 2009
 with Increased K (10% in mound area to model Transmissivity increase that results from mounding)
 Groundwater Model Calibration Results and Post-development Mounding

North Salem Property North Salem, New York

	-			_													
16,000 gpd Case IA - Septic Flow To Entire Septic	Wells	in Septic Area	DTW			5.0		6.7	3.9	8.8		3.6		15.7		10.5	12.5
	Wells	in Septic Area	Rise			2.7		13.0	7.7	7.9		0.4		3.7		1.0	4.7
	Adjusted	Depth of Water	(ft.)	10.6	7.1	5.0	6.2	6.7	3.9	8.8	8.5	3.6	4.2	15.7	2.5	10.5	12.5
	Add X feet Adjusted	of Fill Locally	(ft.)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Predicted Post-development Groundwater Levels	Post-development Depth to Water	(ft.)	10.6	7.1	5.0	6.2	6.7	3.9	8.8	8.5	3.6	4.2	15.7	2.5	10.5	12.5
		Post-development Groundwater	Elevation (ft.)	6.664	522.0	545.3	563.9	535.1	558.4	537.0	564.8	498.4	550.8	508.6	529.0	500.7	510.2
		Rise in Groundwater	(ft.)	0.2	-0.1	2.7	-0.9	13.0	7.7	7.9	0.0	0.4	-0.2	3.7	-0.1	1.0	4.7
		Post-development Groundwater	residual (ft.)	<i>L</i> 'ŀ-	0.3	-1.5	1.3	-14.0	-6.5	7.7-	2.0	0.7	0.7	-5.1	0.1	-0.5	-3.9
	Model Calibration	r Difference in Elevation (ft.)	(residual)	-1.43	0.23	1.24	0.36	-1.03	1.17	0.22	1.98	1.08	0.55	-1.40	0.05	0.45	0.80
		Simulated Groundwater Elevation (ft.)	(Pre-development)	501.1	521.9	541.4	564.4	523.1	549.5	528.9	562.8	496.9	550.5	506.3	529.1	499.3	504.7
		Pre-development Depth to Water	(ft.)	10.8	7.1	7.7	5.3	19.7	11.6	16.7	8.5	4.0	4.0	19.4	2.5	11.5	17.2
	Field Data	Measured Groundwater Elevation (ft.)	(on 3/28/06)	499.7	522.1	542.6	564.8	522.1	550.7	529.1	564.8	498.0	551.0	504.9	529.1	499.7	505.5
		Ground Surface El.	(ft.)	510.52	529.19	550.30	570.10	541.80	562.30	545.80	573.30	502.01	555.00	524.30	531.58	511.20	522.70
		Well No./ Target	5	B-1	B-2	B-3	B-4	B-5	B-6	B-7	B-8	B-9	B-10	B-11	B-12	B-13	B-14

Notes:

1) All above data exept residuals has been rounded to the nearest tenth of a foot.

8.4

5.1

Average

 "Residual" refers to the difference in the modeled groundwater table from the field measured groundwater level at each well location. The residual sign convention is as follows:
 Negative residuals occur when the modeled value is higher than the field (actual) value
 Positive residuals occur when the modeled value is lower than the field value

3) Highlighted Wells / Targets indicate need to raise site grades (not applicable

By ULF 4/21/09

